Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Recent advances on renewable energies and carbon capture

Warianty tytułu
Języki publikacji
In recent years, environmental pollution caused by excessive exploitation and utilization of the Earth’s fossil fuels, extreme exploitation of land resources, and excessive emissions of carbon dioxide (CO2) has caused people to think about how to reduce CO2 emissions and capture the existing CO2 in the atmosphere. The reduction of CO2 emissions can be summarized into two aspects. Firstly, people could use renewable energy to provide energy support for economic and social development. These renewable energies mainly include solar energy; wind energy, hydro, and marine energies; geothermal energy; and biomass energy. The second aspect is the sequestration and conversion of CO2. CO2 is also a form of carbon resource that can be a favorable alternative to traditional carbon resources. The utilization of CO2 can solve both environmental pollution and depletion of traditional carbon resources at the same time. In this paper, the development of five renewable energy sources and their applications in China were discussed, and the methods of effective sequestration and conversion of CO2 were presented. Energy and environment are closely related to the development of modern society. The problems caused by excessive CO2 emissions cannot be ignored and the sequestration of the greenhouse effect requires joint efforts of mankind.
Słowa kluczowe
Opis fizyczny
  • School of Business, Hohai University, Nanjing, China
  • School of Business, Hohai University, Nanjing, China
  • Department of Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, China
  • School of Business, Hohai University, Nanjing, China
  • 1. Energy Q. BP Statistical Review of World Energy June 2006. An annual report prepared by the British Petroleum oil company (www. bp. com) last accessed November, 2006.
  • 2. U.S. Energy Information Administration. (2012). International energy statistics. Retrieved October 18, 2015, from http://www.eia. gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=2.
  • 3. MITCHELL J.F.B. The “greenhouse” effect and climate change. Reviews of Geophysics, 27 (1), 115, 1989.
  • 4. SONIL N., SIVAMOHAN N.R., SUSHANTA K.M., JANUSZ A.K. The progressive routesfor carbon capture and sequestration. Energy Science & Engineering, 4 (2), 99, 2016.
  • 5. MCGREGOR H. Regional climate goes global. Nature Geoscience, 11 (1), 18, 2018.
  • 6. China Meteorological Administration. Released July 12, 2017.
  • 7. FEDOROFF N.V., BATTISTI D.S., BEACHY R.N., COOPER P.J.M., FRISCHHOFF D. A., HODGES C.N., KNAUF V.C., LOBELL D., MAZUR B.J., MOLDEN D., REYNOLDS M.P., RONALD P.C., ROSEGRANT M.W., SANCHEZ P.A., VONSHAK A., ZHU J.K. Radically rethinking agriculture for the 21st century. Science, 327 (5967), 833, 2010.
  • 8. CHANDRAMOWLI S.N., FELDER F.A. Impact of climate change on electricity systems and markets–A review of models and forecasts. Sustainable Energy Technologies and Assessments, 5, 62, 2014.
  • 9. STEWART C., HESSAMI M.A. A study of methods of carbon dioxide capture and sequestration – the sustainability of a photosynthetic bioreactor approach. Energy Conversion and Management, 46 (3), 403, 2005.
  • 10. World Energy Council. World Energy Resources: 2013 Survey.
  • 11. DOWELL N.M., FENNELL P.S., SHAH N., MAITLAND G.C. The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, 7 (4), 243, 2017.
  • 12. IEA. World energy outlook 2015. 2015.
  • 13. REN21. Renewables 2017 global status report. Tech. Rep. REN21-Renewable energy policy network for the 21st century. Paris: REN21 Secretariat; 2017. http://www.ren21. net/gsr_2017_full_report_en.
  • 14. National Development and Reform Commission (NDRC). China renewable energy development report, 165, 5, 2006.
  • 15. Solar PV power statistics for various years from NEA’s website
  • 16. GB2589-81. The General Calculating Rule for Comprehensive Energy Consumption of China.
  • 17. International Renewable Energy Agency.
  • 18. HERBERT G.M.J., INIYAN S., SREEVALSAN E., RAJAPANDIAN S. A review of wind energy technologies. Renewable and Sustainable Energy Reviews, 11 (6), 1117, 2007.
  • 19. LI C.B., CHEN H.Y., ZHU J., ZUO J., ZILLANTE G., ZHAO Z.Y. Comprehensive assessment of flexibility of the wind power industry chain. Renewable Energy, 74, 18, 2015.
  • 20. ACKERMANN T., SÖDER L. Wind energy technology and current status: a review. Renewable and Sustainable Energy Reviews, 4 (4), 315, 2000.
  • 21. LEUNG D.Y.C., YANG Y. Wind energy development and its environmental impact: a review. Renewable and Sustainable Energy Reviews, 16 (1), 1031, 2011.
  • 22. GWEC. Global wind 2008 report. Technical report, Global Wind Energy Council; 2009.
  • 23. GWEC. Global wind 2009 report. Technical report, Global Wind Energy Council; 2010.
  • 24. GWEC. The Wind Power Report: Seventh Edition, 2010 Wind Power Report, 2010.
  • 25. GWEC. Global Wind Report 2011-Annual market update.
  • 26. GWEC. Global Wind Report 2012-Annual market update.
  • 27. GWEC. Global Wind Report 2013-Annual market update.
  • 28. Arántegui R.L., Gonz áles J.S. JRC wind status report: Technology, market and economic aspects of wind energy in Europe. 2015.
  • 29. GWEC. Global Wind Report 2015-Annual market update.
  • 30. GWEC. Global Wind Report 2016-Annual market update.
  • 31. SUN Y., WU J., LI G.J. Influence research of wind power generation on power systems. Power System Technology, 31 (20), 55, 2007.
  • 32. GLEICK P.H. Water and energy. Annual Review of Energy and the Environment, 19 (1), 267, 1994.
  • 33. AKPINAR A., KÖMÜRCÜ M.İ., KANKAL M. Development of hydropower energy in Turkey: the case of Coruh river basin. Renewable and Sustainable Energy Reviews, 15 (2), 1201, 2011.
  • 34. PAN F., ZHAO L. AHP Comprehensive Evaluation on Sustainable Utilization of Water Resources in Hengshui City, China. Transactions of Tianjin University, 21 (2), 178, 2015.
  • 35. CAI Q.Correctly disposing the relation of protection and development, reasonably developing the water power resources of the Nujiang river basin. Yangtze River, 36, 1, 2005.
  • 36. ZHENG T., QIANG M., WANG J., ZHANG D.Evaluation of hydropower resource value of hydropower projects: Case study of Three Gorges Project. Journal of Hydroelectric Engineering, 35 (6), 39, 2016.
  • 37. BARBIER E. Geothermal energy technology and current status: an overview. Renewable and Sustainable Energy Reviews, 6 (1), 3, 2002.
  • 38. LUND J.W., BOYD T.L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 60, 66, 2016.
  • 39. HOU J.C., CAO M.C., LIU P.K. Development and utilization of geothermal energy in China: Current practices and future strategies. Renewable Energy, 125, 401, 2018.
  • 40. ZHAO X., WAN G. Current situation and prospect of China’s geothermal resources. Renewable Sustainable Energy Reviews, 32, 651, 2014.
  • 41. ZHU J., HU K., LU X., HUANG X., LIU K., WU X. A review of geothermal energy resources, development, and applications in china: current status and prospects. Energy, 93, 466, 2015.
  • 42. YUAN X.L., WANG X.J., ZUO J. Renewable energy in buildings in china – a review. Renewable and Sustainable Energy Reviews, 24 (10), 1, 2013.
  • 43. LUND J.W., FREESTON D.H., BOYD T L. Direct utilization of geothermal energy 2010 worldwide review. Geothermics 40, 159, 2011.
  • 44. ERIKSSON E., Thinning operations and their impact on biomass production in stands of Norway spruce and scots pine. Biomass & Bioenergy, 30 (10), 848, 2006.
  • 45. HECK V., GERTEN D., LUCHT W., POPP A.Biomassbased negative emissions difficult to reconcile with planetary boundaries.Nature Climate Change, 8, 151, 2018.
  • 46. LISKA A.J., CASSMAN K.G. Towards standardization of life-cycle metrics for biofuels: greenhouse gas emissions mitigation and net energy yield. Journal of Biobased Materials and Bioenergy, 2 (3), 187, 2008.
  • 47. ESCOBAR J.C., LORA E.S., VENTURINI O.J., YANEZ E.E., CASTILLO E.F., ALMAZAN O.Biofuels: environment, technology and food security. Renewable and Sustainable Energy Reviews, 13 (6), 1275, 2009.
  • 48. THIN B.D., LIN C.Y., KUMAR G. Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy. Journal of Cleaner Production, 122, 29, 2016.
  • 49. AJANOVIC A. Biofuels versus food production: Does biofuels production increase food prices? Energy, 36, 2070, 2011.
  • 50. AYOUB M., ABDULLAH A.Z. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable and Sustainable Energy Reviews, 16 (5), 2671, 2012.
  • 51. WELDEMICHAELY., ASSEFAG. Assessing the energy production and GHG (greenhouse gas) emissions mitigation potential of biomass resources for Alberta. Journal of Cleaner Production, 112, 4257, 2016.
  • 52. CHEN A., CHEN C., XIU Y., LIU X., CHEN J., GUO L., ZHANG R., HOU Z. Niobate salts of organic base catalyzed chemical fixation of carbon dioxide with epoxides to form cyclic carbonates. Green Chemistry, 17(3), 1842, 2015.
  • 53. ZHANG W., WANG Q., WU H., WU P., HE M. A highly ordered mesoporous polymer supported imidazoliumbased ionic liquid: an efficient catalyst for cycloaddition of CO2 with epoxides to produce cyclic carbonates. Green Chemistry, 16 (11), 4767, 2014.
  • 54. ALVES M., GRIGNARD B., MEREAU R., JEROME C., TASSAING T., DETREMBLEUR C. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies. Catalysis Science and Technology, 7 (13), 2651, 2017.
  • 55. TIAN D., LIU B., GAN Q., LI H., DARENSBOURG D.J.Formation of cyclic carbonates from carbon dioxide and epoxides coupling reactions efficiently catalyzed by robust, recyclable one-component aluminum-salen complexes. ACS Catalysis, 2, 2029, 2012.
  • 56. GUO L., WANG C., LUO X., CUI G., LI H. Probing catalytic activity of halide salts by electrical conductivity in the coupling reaction of CO2 and propylene oxide. Chemical Communications, 46 (32), 5960, 2010.
  • 57. DECORTES A., HAAK R.M., MARTIN C., BELMONTE M.M., MARTIN E.,BENET-BUCHHOLZ J., KLEIJ A.W. Copolymerization of CO2 and cyclohexene oxide mediated by Yb(salen)-based complexes. Macromolecules, 48 (22), 8197, 2015.
  • 58. XIONG Y., WANG H., WANG R., YAN Y.,ZHENG B., WANG Y. Cheminform abstract: a facile one-step synthesis of cross-linked polymeric nanoparticles as highly active and selective catalysts for cycloaddition of CO2 to epoxides. Chemical Communications, 46 (19), 3399, 2010.
  • 59. ZHOU H., ZHANG W.Z., LIU C.H., QU J.P., LU X.B.CO2adducts of N-heterocyclic carbenes: thermal stability and catalytic activity toward the coupling of CO2 with epoxides.Journal of Organic Chemistry,73 (20), 8039, 2008.
  • 60. RAN J.R., JARONIEC M.,QIAO S.Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Advanced Materials, 30 (7), 1704649, 2018.
  • 61. LOW J.X., QIU S.Q., XU D.F., JIANG C.J., CHENG B. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. Applied Surface Science, 434, 423, 2018.
  • 62. LIU A.H., MA R., SONG C., YANG Z.Z., YU A., CAI Y., HE L.N., ZHAO Y. N., YU B., SONG Q.W. Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion.Angewandte Chemie International Edition, 51 (45), 11306, 2012.
  • 63. GUI G., WANG J., ZHANG S. Active chemisorption sites in functionalized ionic liquids for carbon capture.Chemical Society Reviews, 45, 4307, 2016.
  • 64. SUMIDA K., ROGOW D.L.,MASON J.A., MCDONALD T.M.,BLOCH E.D.,HERM Z.R.,BAE T.H., LONG J.R. Carbon dioxide capture in metal-organic frameworks. ChemicalReviews, 112 (2), 724, 2011.
  • 65. YU J.M., XIE L.H., LI J.R., MA Y.G., SEMINARIO J.M., BALBUENA P.B. CO2 capture and separations using mofs: computational and experimental studies. Chemical Reviews, 117 (14), 9674, 2017.
  • 66. ÁLVAREZ J.R., MILEO P.G.M., SÁNCHEZ-GONZÁLEZ E., ZÁRATE J.A., RODRÍGUEZ-HERNÁNDEZ J., GONZÁLEZ-ZAMORA E., MAURIN G., IBARRA I.A. Adsorption of 1-propanol in the channel-like InOF-1 metal-organic framework and its influence on the CO2capture performances. Journal of Physical Chemistry C, 122, 5566, 2018.
  • 67. JIN C., ZHANG S., ZHANG Z., CHEN Y. Mimic carbonic anhydrase using metal-organic frameworks for CO2 capture and conversion. Inorganic Chemistry. 57 (4), 2169, 2018.
  • 68. FURUKAWA H., YAGHI O.M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. Journal of the American Chemical Society, 131 (25), 8875, 2009.
  • 69. MAHURIN S.M., GORKA J., NELSON K.M., MAYES R.T., DAI S. Enhanced CO2/N2 selectivity in amidoximemodified porous carbon. Carbon, 67 (2), 457, 2014.
  • 70. MATES E.D., MAYTON R.D., NTAI I., DAVIS J.H. CO2 capture by a task-specific ionic liquid. Journal of the American Chemical Society, 124 (6), 926, 2002.
  • 71. JIANG Y.Y., WANG G.N., ZHOU Z., WU Y.T., GENG J., ZHANG Z.B. Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity. Chemical Communications, 8 (4), 505, 2008.
  • 72. ZHANG Y., ZHANG S., LU X., ZHOU Q., FAN W., ZHANG X. Dual amino-functionalised phosphonium ionic liquids for CO2 capture. Chemistry-A European Journal, 15 (12), 3003, 2009.
  • 73. KONG X., DENG H., YAN F., KIM J., SWISHER J.A., SMIT B.,YAGHI O.M., REIMER J.A. Mapping of functional groups in metal-organic frameworks. Science, 341 (6148), 882, 2013.
  • 74. ZALOMAEVA O.V., CHIBIRYAEV A.M., KOVALENKO K.A., KHOLDEEVA O. A., BALZHINIMAEV B.S., FEDIN V.P. Cyclic carbonates synthesis from epoxides and CO2 over metal-organic framework Cr-MIL-101. Journal of Catalysis, 298 (298), 179, 2013.
  • 75. MUNN A.S., CLARKSON G.J., MILLANGE F., DUMONT Y., WALTON R.I. M(II) (M = Mn, Co, Ni) variants of the MIL-53-type structure with pyridine-Noxide as a co-ligand. CrystEngComm, 15 (45), 9679, 2013.
  • 76. KENT C.A., LIU D.M., ITO A., ZHANG T., BRENNAMAN M.K., MEYER T.J.,LIN W.B. Rapid energy transfer in non-porous metal–organic frameworks with caged Ru(bpy)3 2+ chromophores: oxygen trapping and luminescence quenching. Journal of Materials Chemistry A, 1 (47), 14982, 2013.
  • 77. FENG Y.F., JIANG H., LI S.N., WANG J., JING X.Y., WANG Y.R., CHEN M. Metal-organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids and Surfaces A Physicochemical and Engineering Aspects, 431 (2), 87, 2013.
  • 78. FORGAN R.S., SMALDONE R.A., GASSENSMITH J.J., FURUKAWA H., CORDES D. B., LI Q.W., WILMER C.E., BOTROS Y.Y., SNURR R.Q., SLAWIN A.M.Z., STODDART J.F. Nanoporous carbohydrate metal-organic frameworks. Journal of the American Chemical Society, 134 (1), 406, 2012.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.