PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 08 |

Tytuł artykułu

Sulfur stress-induced antioxidative responses in leaves of Triticum aestivum L.

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Antioxidative responses were investigated in leaves of wheat (Triticum aestivum L.) grown at varying S levels ranging from deficiency to excess (1, 2, 4, 6 and 8 mM S). Optimum yield was observed in plants supplied with 4 mM S. Wheat responded to S deficiency and excess supply by decreasing growth of root and shoot. Chlorosis in young leaves was observed after 15 days of deficient S supply. The biomass and concentration of photoassimilatory pigments decreased in plants grown at 1, 2, 6 and 8 mM S supply. The concentration of thiobarbituric acid reactive substances (TBARS), cysteine, nonprotein thiol and hydrogen peroxide (H₂O₂) increased in plants grown under S stress. Accumulation of TBARS and H₂O₂ in leaves indicated oxidative damage in S-deficient and S-excess plants. Deficient and excess levels of S showed an increase in the activities of antioxidative enzymes superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

08

Opis fizyczny

p.2079-2089,fig.,ref.

Twórcy

autor
  • Plant Nutrition and Stress Physiology Laboratory, Department of Botany, University of Lucknow, 226007 Lucknow, India
autor
  • Plant Nutrition and Stress Physiology Laboratory, Department of Botany, University of Lucknow, 226007 Lucknow, India

Bibliografia

  • Adiputra IGK, Andreson JW (1995) Effect of sulphur nutrition on redistribution of sulphur in vegetative barley. Physiol Plant 95:643–650
  • Alscher R (1989) Biosynthesis and antioxidants function of glutathione in plants. Plant Physiol 77:457–464
  • Arora SK, Luthra YP (1971) Relationship between sulphur content of leaf with methionine, cysteine and cystine contents in the seeds of Phaseolus aureus L. as affected by S, P and N application. Plant Soil 34:91–96
  • Astolfi S, Zuchi S (2012) Adequate S supply protects barley plants from adverse effects of salinity stress by increasing thiol contents. Acta Physiol Plant 35:175–181
  • Bartosz G (1997) Oxidative stress and superoxide dismutases. Plant Physiol 101:7–12
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gel. Anal Biochem 44:276–287
  • Blake-Kalff MMA, Harrison KR, Hawkesford MJ, Zhao FJ, McGrath SP (1998) Allocation of sulfur within oilseed rape (Brassica napus L.) leaves in response to sulfur deficiency. Physiol Plant 118:1337–1344
  • Bowler C, Van Montago M, Inze D (1992) Superoxide dismutases in plants. Ann Rev Plant Physiol Plant Mol Biol 43:83–116
  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416
  • Brennan RF, Bell RW, Raphael C, Eslick H (2010) Sources of sulphur for dry matter, seed yield, and oil concentration of canola grown in sulphur deficient soils of south-western Australia. J Plant Nutr 33:1180–1194
  • Buettner GR, Jurkiewicz BA (1996) Chemistry and biochemistry of ascorbic acid. In: Candens E, Packer L (eds) Hand book of antioxidants. Dekker, New York, pp 91–115
  • Burke JJ, Holloway P, Dalling MJ (1986) The effect of sulfur deficiency on the organization and photosynthetic capability of wheat leaves. J Plant Physiol 125:371–375
  • Cakmak I (1994) Activity of ascorbate dependent H₂O₂—scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium—deficient leaves. J Exp Bot 45:1259–1266
  • Chesnin L, Yien CH (1951) Turbidimetric determination of available sulphates. Soil Sci Soc Am Pro 15:528–530
  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77
  • Elstner EF, Osswald W (1994) Mechanism of oxygen activation during plant stress. Proc R Soc Edinb 102B:131–154
  • Euler H, Josephson K (1927) U¨ ber Katalase I. Leibigs Ann 452:158–187
  • Foyer CH (1997) Oxygen metabolism and electron transport in photosynthesis. In: Scandalios J (ed) The molecular biology of free radical scavenging systems. Cold Spring Harbor Laboratory Press, New York, pp 587–621
  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100
  • Foyer CH, Souriau N, Perret S, Lelandis M, Kunert KJ (1995) Overexpression of glutathione reductase but not glutathione synthase, leads to increase in antioxidants capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057
  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633
  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930
  • Guwy AJ, Martin SR, Hawkes FR, Hawskes DL (1999) Catalase activity measurement in suspended aerobic biomass and soil samples. Enzym Microbiol Technol 25:669–676
  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon press, Oxford
  • Hawkesford MJ, Kok LJ (2006) Managing sulphur metabolism in plants. Plant Cell Environ 29:302–395
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Heyno E, Mary V, Schopfer P, Krieger-Liszkay A (2011) Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta 234:35–45
  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signaling: the latest news. Curr Opin Plant Biol 7:323–328
  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and paraquat. Biochem 210:899–903
  • Leustek T, Saito K (1999) Sulphate transport and assimilation in plants. Plant Physiol 120:637–643
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Packer L, Douce R (eds) Methods in enzymology. Academic Press Inc., New York, pp 350–382
  • Luck M (1963) Peroxidase. In: Bergmeyer HV (ed) Methods of enzymic analysis. Academic Press Inc., New York, pp 895–897
  • Lunde C, Zygaldo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A (2008) Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol Plant 134:508–521
  • Madamanchi NR, Alscher RG (1991) Metabolic bases for differences in sensitivity of two pea cultivars to sulphur dioxide. Plant Physiol 97:88–93
  • Madamanchi NR, Anderson JV, Alscher RG, Carmer CL, Hess JL (1992) Purification of multiple forms of glutathione reductase from pea (Pisum sativum L.) seedlings and enzyme levels in ozone fumigated pea leaves. Plant Physiol 100:138
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668
  • Melhorn H, Lelandis M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrates for plant peroxides. FEBS Lett 378:203–206
  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Nikifrova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650
  • Padh H (1990) Cellular functions of ascorbic acid. Biochem Cell Biol 68:1166–1173
  • Pandey N, Archana (2013) Antioxidant responses and water status in Brassica seedlings subjected to boron stress. Acta Physiol Plant 35:697–706
  • Pandey N, Pathak GC, Pandey DK, Pandey R (2009) Heavy metals Co, Ni, Cu, Zn and Cd, produce oxidative damage and evoke differential antioxidant responses in spinach. Braz J Plant Physiol 21:103–111
  • Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. PNAS 14:5535–5540
  • Rennenberg H (1982) Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 21:2771–2781
  • Resurreccion AP, Makino A, Bennet J, Mae T (2002) Effect of light intensity on the growth and photosynthesis of rice under different sulfur concentration. Soil Sci Plant Nutr 48:71–77
  • Rizhsky L, Hallak-Herr E, Breusegem FV, Rachmilevitch S, Barr JE, Rodermal S, Inze D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342
  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26
  • Sutherland MW (1991) The generation of oxygen radicals during host plant responses to infection. Physiol Mol Plant Pathol 39:79–93
  • Tanaka K, Sugahara K (1980) Role of superoxide dismutase in the defense against SO₂ toxicity and induction of superoxide dismutase with SO₂ fumigation. Res Rep Natl Inst Environ Studies 11:155–164
  • Tewari RK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidants responses-influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694
  • Tewari RK, Kumar P, Sharma PN (2010) Morphology and oxidative physiology of sulphur-deficient mulberry plants. Environ Exp Bot 68:301–308
  • Willekins H, Chamnongpal S, Davey M, Schrauder M, Langebartels C (1997) Catalase is a sink for H₂O₂ and is indispensable for stress defense in C₃ plants. EMBO J 16:4806–4816
  • Withers PJ, Tytherleigh ARJ, Donnell FMO (1995) Effect of sulphur fertilizers on the grain yield and sulphur content of cereals. J Agric Sci 125:317–324
  • Zhao Y, Xiao X, Bi D, Hu F (2008) Effects of sulphur fertilization on soybean root and leaf traits, and soil microbial activity. J Plant Nutr 31:473–483

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-896b2125-d51a-4231-a61e-d91b971c3717
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.