PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Extracting an urban growth model’s land cover layer from spatio-temporal cadastral database and simulation application

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Land cover data, resolution, and time are among the important factors of SLUETH and similar urban growth simulation models (UGSM). Multitemporal satellite images are often used in many UGSM projects and settlement area, forest, agricultural area, highway, and temporal land cover classes can be extracted from satellite data using image processing techniques. However, land cover classes can also be economically obtained with higher resolutions from cadastral maps. Parcels and attributes in the geographical and temporal database may support a more realistic on-land cover change. The aim of our study is to determine the land cover change from 1961 to 2014 with temporal cadastral data and simulate urban expansion starting from 2030 to 2070 using SLUETH, a cellular automata (CA) based UGSM, for densely the populated Sancaktepe District in the metropolitan area of Istanbul. The population of Sancaktepe increased over 55% between 1961 and 2014, while approximately half of the forest and agriculture areas were transformed to a settlement area. According to the simulation results, if necessary precautions are not taken, almost all of the remaining forest and agricultural areas will be converted into residential areas by 2070.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1063-1069,fig.,ref.

Twórcy

autor
  • Department of Geomatics Engineering, Cumhuriyet University, Sivas, Turkey
autor
  • Department of Geomatics Engineering, Yildiz Technical University, Istanbul, Turkey
autor
  • Department of Informatics, Mimar Sinan Fine Arts University, Istanbul, Turkey
autor
  • Department of Geomatics Engineering, Cumhuriyet University, Sivas, Turkey
autor
  • Department of Geomatics Engineering, Cumhuriyet University, Sivas, Turkey

Bibliografia

  • 1. Ayazli I. E., Helvaci C., Batuk F., Stoter J. Designing three dimensional property right database. African Journal of Business Management, 5 (22), 9440, 2011.
  • 2. Burdett M. Cadastre 2034; Powering Land & Real Property. Available online: http://www.icsm.gov.au/cadastral/Cadastre2034.pdf (accessed on 01 Dec. 2017).
  • 3. Enemark S. Land Administration Systems-managing rights, restrictions and responsibilities in land. Map World Forum. Hyderabad, India. 2009.
  • 4. Ayazli I.E., Kilic F., Lauf S., Demir H., Kleinschmit B. Simulating urban growth driven by transportation networks: A case study of the Istanbul third bridge. Land Use Policy, 49, 332, 2015.
  • 5. Liu Y., Hu Y., Long S., Liu L., Liu X. Analysis of the Effectiveness of Urban Land-Use-Change Models Based on the Measurement of Spatio-Temporal, Dynamic Urban Growth: A Cellular Automata Case Study. Sustainability, 9 (5), 1, 2017.
  • 6. Chen Y., Liu X., Li X. Calibrating a Land Parcel Cellular Automaton (LP-CA) for urban growth simulation based on ensemble learning. Int. J. Geog. Inf. Sci., 31 (12), 1, 2017.
  • 7. Hosseinali F., Alesheikh A. A., Nourian F. Rapid Urban Growth in the Qazvin Region and Its Environmental Hazards: Implementing an Agent-Based Model. Pol. J. Environ. Stud., 23 (3), 727, 2014.
  • 8. Debnath R., Amin A.N. A geographic information system-based logical urban growth model for predicting spatial growth of an urban area. Environment and Planning B: Planning and Design, 1, 2018.
  • 9. Assefa T., Altunkaynak A. Modeling Urbanization of Istanbul under Different Scenarios Using SLEUTH Urban Growth Model. Journal of Urban Planning and Development, 143 (2), 2017.
  • 10. Ayazli I.E., Kilic F., Lauf S., Kleinschmit B., Demir H. Creating Urban Growth Simulation Models Driven by the Bosphorus Bridges. Fresenius Environmental Bulletin, 26 (1), 113, 2017.
  • 11. Bihamta N., Soffianian A., Fakheran S., Gholamalifard M. Using the SLEUTH Urban Growth Model to Simulate Future Urban Expansion of the Isfahan Metropolitan Area, Iran. J Indian Soc Remote Sens, 43 (2), 407, 2015.
  • 12. Guan C., Rowe P. G. Should big cities grow? Scenario-based cellular automata urban growth modeling and policy applications2016. Journal of Urban Management, 5, 65, 2016.
  • 13. Jantz C. A., Goetz S. J., Donato D., Claggett P. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Computers, Environment and Urban Systems, 34, 1, 2010.
  • 14. Heinsch L., Lauf S., Kleinschmit B. Modeling urban growth and land usechange with a cellular automaton in the Berlin metropolitan region. GIS-Zeitschrift für Geoinformatik, 25 (2), 56, 2012.
  • 15. PROJECT GIGALOPOLIS. Available online: http://www.ncgia.ucsb.edu/projects/gig/index.html. (accessed on 01 Dec. 2017).
  • 16. Akin A., Clarke K. C., Berberoglu S. The impact of historical exclusion on the calibration of the SLEUTH urban growth model. International Journal of Applied Earth Observation and Geoinformation, 27 (Part B), 156, 2014.
  • 17. Berberoglu S., Akin A., Clarke K. C. Cellular automata modeling approaches to forecast urban growth for Adana, Turkey: A comparative approach. Landscape and Urban Planning, 153, 11, 2016.
  • 18. Park S., Clarke K. C., Choi C., Kim J. Simulating Land Use Change in the Seoul Metropolitan Area after Greenbelt Elimination Using the SLEUTH Model. Journal of Sensors, 2017, 1, 2017.
  • 19. Ayazli I. E. Simulation Model of Urban Sprawl Driven by Transportation Networks: 3rd Bosphorus Bridge Example. Yildiz Technical University, Istanbul, 2011.
  • 20. Clarke K.C., Hoppen S., Gaydos L. A selfmodifying cellular automaton model of historical urbanization in the San Francisco Bay Area. Environment and Planning B: Planning and Design, 24, 247, 1997.
  • 21. Dietzel C., Clarke K. C. Toward Optimal Calibration of the SLEUTH Land Use Change Model. Transactions in GIS, 11 (1), 29, 2007.
  • 22. Du Y., Teillet P.M., Cihlar J. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sensing of Environment, 82 (1), 123, 2002.
  • 23. Jin S., Yang L., Zhu Z., Homer C. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011. Remote Sensing of Environment, 195, 44, 2017.
  • 24. Kiruki H M., van der Zanden E.H., Malek Ž., Verburg P.H. Land Cover Change and Woodland Degradation in a Charcoal Producing Semi-Arid Area in Kenya. Land Degrad. Develop., 28, 472, 2017.
  • 25. Nourqolipour R., Balasundram S.K., Ahmad N.B., Sood A.M., Buyong T. Predicting the Effects of Urban Development on Land Transition and Spatial Patterns of Land Use in Western Peninsular Malaysia. Appl. Spatial Analysis, 9 (1), 1, 2014.
  • 26. Turkish Statistical Institute Web Page. Available online: https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr.(accessed on 01 Dec. 2017).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8933fae7-7a97-4fbb-a7fb-9535b43d30be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.