PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 16 | 5 |

Tytuł artykułu

Interactions of arbuscular mycorrhizal fungi with plants and soil microflora

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Mycorrhizal symbiosis is known since the 19th century and has been described as the coexistence of fungus with the roots of vascular plants. Root colonization by endomycorrhizal fungi causes changes in the quantity and quality of exudates produced by roots. The mycorrhiza may also affect plants’ health status, their competitiveness and succession in eco-systems, and the formation of soil aggregates. The presence of a symbiont in the roots of plants causes a direct and indirect effect on rhizosphere microorganisms, fixing free nitrogen and transforming compounds constituting nutrient substrates for plants. The physiological and morphological relations of AMF with the plant promote its vitality and competitiveness by increasing resistance to abiotic and biotic stresses. Effective activation of the plant immune responses may occur, not only locally but also systemically. Mycorrhizal fungi, through the change of the composition and amount of root exudates, have influence on the development and activity of the communities of soil microorganisms. Certain soil bio-controlling microorganisms frequently showing synergism of the protective effect on plants together with AMF. In some cases, however, no positive interaction of selected microorganisms and endomycorrhizal fungi is observed. Double inoculation with the some species of bacteria and the mycorrhizal fungus can cause a decrease in the yielding the plants. Mycoparasitism of AMF spores and hyphae is also encountered in interaction between saprophytic fungi and AMF. This phenomenon is based on the lytic abilities of some fungi species which can lower the level of colonization and the effectiveness of mycorrhizal symbiosis with plants. Good knowledge of plant symbiosis with endomycorrhizal fungi and activity of these fungi in soils is necessary for their use in plant production.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

5

Opis fizyczny

p.89-95,ref.

Twórcy

  • University of Life Sciences in Lublin, Lublin, Poland
autor
  • Institute of Soil Science and Plant Cultivation, State Research Institute, Pulawy, Poland
autor
  • University of Life Sciences in Lublin, Lublin, Poland
autor
  • University of Life Sciences in Lublin, Lublin, Poland
  • University of Life Sciences in Lublin, Lublin, Poland
autor
  • Institute of Soil Science and Plant Cultivation, State Research Institute, Pulawy, Poland
autor
  • University of Life Sciences in Lublin, Lublin, Poland
  • University of Mosul, Mosul, Iraq

Bibliografia

  • Al-Askar, A.A., Rashad, Y.M. (2010). Arbuscular mycorrhizal fungi: A biocontrol agent against common bean Fusarium root disease. Plant Pathol. J., 9(1), 31–38.
  • Amer, M.A., Abou-El-Seoud, I.I. (2008). Mycorrhizal fungi and Trichoderma harzianum as biocontrol agents for suppression of Rhizoctonia solani damping-off disease of tomato. Commun. Agric. Appl. Biol. Sci., 73(2), 217–232.
  • Andrade, G., Azcon, R., Bethlenfalvay, G.J. (1995). A rhizobacterium modifies plant and soil responses to the mycorrhizal fungus Glomus mosseae. App. Soil Ecol., 2, 195–202.
  • Artursson, V., Finlay, R.D., Jansson, J.K. (2006). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol., 8(1), 1–10.
  • Bashan, Y., Holguin, G. (1997). Azospirillum – plant relationships: environmental and physiological advances (1990–1996). Can. J. Microbiol., 43, 103–121.
  • Birhane, E., Sterck, F.J., Fetene, M., Bongers, F., Kuyper, T.W. (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincence seedlings under pulsed water availability conditions. Oecologia, 169(4), 895–904.
  • Biró, B., Köves-Péchy, K., Vörös, I., Takács, T., Eggenberger, P., Strasser, R.J. (2000). Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. App. Soil Ecol., 15, 159–168.
  • Błaszkowski, J. (2012). Glomeromycota. W. Szafer Institute of Botany Polish Academy of Sciences, Kraków, p. 304.
  • Bücking, H., Liepold, E., Ambilwade, P. (2012). The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport Processes. In: Plant science, Dhal, N.K., Sahu, S.C. (eds). Available: http://dx.doi.org/10.5772/52570.
  • Cordier, C., Pozo, M.J., Barea, J.M., Gianinazzi, S., Gianinazzi-Pearson, V. (1998). Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Am. Phytopathol. Soc., 11(10), 1017–1028.
  • De Mars, B.G., Boerner, R.E.J. (1995). Arbuscular mycorrhizal development in three crucifers. Mycorrhiza, 5, 405–408.
  • Derkowska, E., Sas-Paszt, L., Dyki, B., Sumorok, B. (2015). Assessment of mycorrhizal frequency in the roots and fruit plants using different dyes. Adv. Microbiol., 5, 54–64.
  • Dumas-Gaudot, E., Guillaume, P., Tahiri-Alaoui, A., Gianinazzi-Pearson, V., Gianinazzi S. (1994). Changes in polypeptide patterns in tobacco roots colonized by two Glomus species. Mycorrhiza, 4, 215–221.
  • Finlay, R.D. (2008). Ecological aspects of mycorrhizal symbiosis. with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J. Exp. Bot., 59(5), 1115–1126.
  • Hage-Ahmed, K., Krammer, J., Steinkellner, S. (2013). The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato. Mycorrhiza, 23, 543–550.
  • Hart, M.M., Reader, R.J., Klironomos, J.N. (2003). Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Biochem. Sci., 18(8), 418–423.
  • Helgason, T., Fitter, A.H., Young, J.P.W. (1999). Molecular diversity of arbuscular mycorrhizal fungi colonizing Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Mol. Ecol., 8, 659–666.
  • Isopi, R., Fabbri, P., Del Gallo, M., Puppi, G. (1995). Dual inoculation of Sorgum bicolor (L.) Moench ssp. bicolor with vesicular arbuscular mycorrhizas and Acetobacter diazotrophicus. Symbiosis, 18, 43–55.
  • Jakobsen, I., Smith, S.E., Smith, F.A. (2003). Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition. In: Mycorrhizal ecology, Van der Heijden, M.G.A, Sanders R. (eds). Springer-Verlag, Berlin–Heidelberg.
  • Joseph, P.J., Sivaprasad, P. (2012). The potential of arbuscular mycorrhizal associations for biocontrol of soilborne diseases. In: Biocontrol potential and its exploitation in sustainable agriculture: crop diseases, weeds and nematodes, Upadhyay, R.K, Mukerij, K.G., Chamola, B. (eds). Springer Science & Buissnes Media, New York.
  • Klingner, A., Bothe, H., Wray, V., Marner, F.J. (1995). Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochemistry, 38(1), 53–55.
  • Kowalczyk, S., Błaszkowski, J. (2011). Arbuscular mycorrhizal fungi (Glomeromycota) associated with roots of plants of the Lubuskie province. Acta Mycol., 46(1), 3–18.
  • Leal, P.L., Stürmer, S.L., Siqueira, J.O. (2009). Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from soils under different land use systems in the Amazon. Brazil. Braz. J. Microbiol., 40, 111–121.
  • Mark, L., Cassels, A.C. (1996). Genotype-dependence in the interaction between Glomus fistulosum, Phytophtora fragarie and the wild strawbery (Fragaria vesca). Plant Soil, 185, 233–239.
  • Martínez-Medina, A., Roldán, A., Pascual, J.A. (2011). Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: Growth response and Fusarium wilt biocontrol. Appl. Soil Ecol., 47, 98–105.
  • Morandi, D. (1996). Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil, 185(2), 241–251.
  • Mugabo, J.P., Balkrishna, S.B., Anil, K., Havugimana, E., Byiringiro, E., Yumnam, N.S. (2014). Contribution of arbuscular mycorrhizal fungi (AM Fungi) and rhizobium inoculation on crop growth and chemical properties of rhizospheric soils in high plants. IOSR J. Agric. Vet. Sci., 7(9), 45–55.
  • Oehl, F., Sieverding, E. (2004). Pacispora, a new vesicular arbuscular mycorrhizal fungal genus in the Glomeromycetes. J. Appl. Bot. 78, 72–82.
  • Oehl, F., Sieverding, E., Palenzuela, J., Ineichen, K., da Silva, G.A. (2011). Advances in Glomeromycota taxonomy and classification. IMA Fungus, 2, 191–199.
  • Palenzuela, J., Ferrol, N., Boller, T., Azcón-Aguilar, C., Oehl, F. (2008). Otospora bareai, a new fungal species in the Glomeromycetes from a dolomitic shrubland in the Natural Park of Sierra de Baza (Granada, Spain). Mycologia, 100(2), 296–305.
  • Parniske, M. (2008). Arbuscular mycorrhiza. The mother of plant root endosymbioses. Nat. Rev. Microbiol., 6, 763–775.
  • Pozo, M.J., Verhage, A., García-Andrade, J., García, J.M., Azcón-Aguilar, C. (2009). Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Mycorrhizas – functional processes and ecological impact, Azcon-Aguilar, C., Barea, J.M., Gianinazzi, S., Gianinazzi-Pearson, V. (eds). Springer-Verlag, Berlin–Heidelberg. DOI: 10.1007-978-3-540-87978-7_9.
  • Quin, H., Lu, K., Strong, P.J., Xu, Q., Wu, Q., Xu, Z., Xu, J., Wang, H. (2015). Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture. Appl. Soil Ecol., 89, 35–43.
  • Schüßler, A., Schwarzott, D., Walker, C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Myc. Res., 105, 1413–1421.
  • Sharma, M.P., Gaur, A., Mukerji, K.G. (2007). Arbuscular mycorrhiza mediated plant pathogen interactions and the mechanisms involved. In: Biological control of plant diseases, Sharma, M.P., Gaur, A., Mukerji, K.G. (eds). Haworth Press, Binghamton.
  • Sieverding, E., Oehl, F. (2006). Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. J. Appl. Bot. Food Qual., 80, 69–81.
  • Smith, S.E., Read, D.J. (2008). Mycorrhizal symbiosis, 3rd ed. Academic Press, San Diego.
  • Spain, J.L., Sieverding, E., Oehl, F. (2006). Appendicispora: a new genus in the arbuscular mycorrhizaforming Glomeromycetes, with a discussion of the genus Archaeospora. Mycotaxon, 97, 163–182.
  • Tahat, M.M., Sijam, K. (2012). Arbuscular mycorrhizal fungi and plant root exudates bio-communications in the rhisosphere. Afr. J. Microbiol. Res., 6(64), 7295–7301.
  • Tahat, M.M., Sijam, K., Othman, R. (2010). Mycorrhizal fungi as a biocontrol agent. Plant Pathology J., 9(4), 198–207.
  • Tarafdar, J.C. (1995). Effect of vesicular-arbuscular mycorrhizal and phosphatase-reducing fungal inoculation on growth and nutrition of white clover supplied with organic phosphorus. Folia Microbiol., 40(3), 327–332.
  • Torrecillas, E., Alguacil, M.M., Roldán, A. (2012). Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid mediterranean prairies. Appl. Environ. Microbiol., 78(17), 6180–6186.
  • Walker, C., Schüßler, A. (2004). Nomenclatural clarifications and new taxa in the Glomeromycota. Mycol. Res. 108, 979–982.
  • Walker, C., Vestberg, M., Schüßler, A. (2007). Nomenclatural clarifications in Glomeromycota. Mycol. Res. 111, 253–255.
  • Wang, B., Qiu, Y.L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299–363.
  • Wang, Y.Y., Vestberg, M., Valker, C., Hurme, T., Zhang, X., Lindström, K. (2008). Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza, 18, 59–68.
  • Vàzquez, M., Cesar, S., Azcon, R., Barea, J.M. (2000). Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol., 15, 261–272.
  • Wyss, P., Boller, T., Wiemken, A. (1992). Testing the effect of biological control agents on the formulation of vesicular arbuscular mycorrhiza. Plant Soil, 47, 159–162.
  • Yang, Y., Han, X., Liang, Y., Ghosh, A., Chen, J., Tang, M. (2015). The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS ONE 10(12), e0145726. DOI: 10.1371/journal.pone.0145726.
  • Yao, M.K., Tweddell, R.J., Désilets, H. (2002). Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extend of disease caused by Rhizoctonia solani. Mycorrhiza, 12, 235–242.
  • Ząbkiewicz, A., Myga-Nowak, M., Bandurska, K., Paczyńska, J., Szybecka, A., Krupa, P. (2014). The application of PCR reaction for identification of MHB bacteria species. Archiv. Environ. Prot., 40(2), 115–122.
  • Zarea, M.J., Karimi, N., Goltapeh, E.M., Ghalavand, A. (2011). Effect of cropping systems and arbuscular mycorrhizal fungi on soil microbial activity and root nodule nitrogenise. J. Saudi Soc. Agric. Sci., 10(2), 109–120.
  • Zuccaro, A., Lahrmann, U., Langen, G. (2014). Broad compatibility in fungal root symbioses. Curr. Opin. Plant Biol., 20, 135–145.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-892c3cb5-62c5-4734-a3f5-55a6abebd713
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.