Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Synthesizing nano silica nanoparticles from barley grain waste: effect of temperature on mechanical properties

Warianty tytułu
Języki publikacji
In this investigation we report the synthesis of nano silica (NS) nanoparticles from barley grass waste – an environmental burden – using varying temperatures during preparation. The temperatures used during the investigation were 400, 500, 600, and 700ºC, and we studied its effects on the mechanical properties of the NS nanoparticles for use in environmentally friendly applications. Furthermore, the NS nanoparticles resulting from high temperature synthesis were characterized using various characterization methodologies such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) spectrometry analysis. The result of the various characterizations revealed the presence of elemental Si, C, and O in the synthesized nanoparticles. Using XRF, we observed that higher amounts of SiO2 particles from NS were obtained at 600ºC and 700ºC, also resulting in higher strength in the mechanical properties. Furthermore, using the Brunauer-Emmett-Teller (BET) methodology, we were able to measure the surface area corresponding to 150 m2/g. Additional methodologies were used, such as differential scanning calorimetric (DSC), thermo gravimetric analysis (TGA), SEM, and tensile analysis. The results of this study showed improved and stable mechanical properties with the increase in temperature during synthesis.
Słowa kluczowe
Opis fizyczny
  • Department of Environmental Science, Cyprus International University, Nicosia, Turkey
  • Environmental Research Centre, Cyprus International University, Nicosia, Turkey
  • Department of Bioengineering, Cyprus International University, Nicosia, Turkey
  • Environmental Research Centre, Cyprus International University, Nicosia, Turkey
  • International Clean Water Institute, Manassas, Virginia and New Jersey City University - State University of New Jersey, Jersey City, New Jersey, USA
  • 1. ANUPAMA A.K., KUMAR P., G.D. RANSINCHUNG R.N., Use of Various Agricultural and Industrial Waste Materials in Road Construction, Procedia - Social and Behavioral Sciences, 104, 264, 2013.
  • 2. KARABÍN M., JELÍNEK L., KOTRBA P., CEJNAR R., DOSTÁLEK P., Enhancing the performance of brewing yeasts. Biotechnology Advances. ( biotechadv.2017.12.014) 2018.
  • 3. VAN DONKELAAR L.H.G., NOORDMAN T.R., BOOM R.M., VAN DER GOOT A.J. Pearling barley to alter the composition of the raw material before brewing, Journal of Food Engineering, 150, 44, 2015.
  • 4. FILLAUDEAU L., BLANPAIN-AVET P., DAUFIN G., Water, wastewater and waste management in brewing industries. Journal of Cleaner Production, 14 (5), 463. 2006.
  • 5. AYUB S., ALI S.I., KHAN N.A., RAO R.A.K., Treatment of wastewater by agricultural waste, Environ. Prot. Control J., 2 (1), 5, 1998.
  • 6. SRINIVASAN K., BALASUBRAMANIAM N., RAMAKRISHNA T.V., Studies on chromium removal by rice husk carbon, Indian J. Environ. Health, 30 (4), 376, 1988.
  • 7. TAN W.T., OOI S.T., LEE C.K., Removal of chromium (VI) from solution by coconut husk and palm pressed fibre, Environ. Technol., 14 (3), 277, 1993.
  • 8. KAVAZ D., ODABAS S., DENKBAS E.B., VASEASHTA A. A practical methodology for IgG purification via chitosan based magnetic nanoparticles, Digest Journal of Nanomaterials and Biostructures, 7 (3), 1165, 2012.
  • 9. KAVAZ D., ÇIRAK T., BAYRAM C., ÖZTÜRK E., DENKBAŞ E.B., Preparation of Magnetic Chitosan Nanoparticles for diverse Biomedical Applications, Functionalized Nanoscale Materials, Devices And Systems, NATO Science for Peace and Security Series B - Physics and Biophysics, 31, 2008.
  • 10. DENKBAŞ E.B., BAYRAM C., KAVAZ D., ÇIRAK T., DEMIRBILEK M., Nanoplatforms for Detection, Remediation and Protection Against Chem-Bio Warfare, in Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism, Ed. Ashok Vaseashta, Eric Braman, and Philip Susmann, Springer, NY, 191, 2012.
  • 11. STANDER L., THEODORE L. Environmental Implications of Nanotechnology - an Update, International Journal of Environmental Research and Public Health, 8 (2), 470, 2011.
  • 12. VASEASHTA, ASHOK, Life Cycle Analysis of Nanoparticles, ISBN-13: 978-1605950235, Destech Publication, Lancaster, PA. 2015.
  • 13. SALATA O.V. Applications of nanoparticles in biology and medicine, Journal of Nanobiotechnology, 2, 3, 2004.
  • 14. KAVAZ D., AIGBE R., AUGUSTINE E.E. Detection of Pathogens in Aqueous Media with Modified Magnetic Nanoscaled Particles, Fresenius Environmental Bulletin, 26 (No. 1a/2017), 761, 2017.
  • 15. SARAWADE P.B., KIM J.K, HILONGA A., KIM H.T. Preparation of hydrophobic mesoporous silica powder with a high specific surface area by surface modification of a wet-gel slurry and spray-drying. J. Power Tech., 197 (3), 288, 2010.
  • 16. GHORBANI F., SANATI A.M., MALEKI M. Production of Silica Nanoparticles from Rice Husk as Agricultural Waste by Environmental Friendly Technique, Environmental Studies of Persian Gulf, 2 (1), 56, 2015.
  • 17. WANG W., MARTIN J.C., FAN X., HAN A., LUO Z., SUN L., Silica Nanoparticles and Frameworks from Rice Husk Biomass, ACS Appl. Mater. Interfaces, 4 (2), 977, 2012.
  • 18. SHARIFF I., SHAOBIN W., HA M.A. Removal of emulsified oil from oily wastewater using agricultural waste barley straw, Biochemical Engineering Journal, 49 (1), 78, 2010.
  • 19. JAFARI M., NOURI A., KAZEMIMOGHADAM M., MOHAMMADI T. Investigations on hydrothermal synthesis parameters in preparation of nanoparticles of LTA zeolite with the aid of TMAOH, Powder Technology, 237, 442, 2013.
  • 20. HENCH L.L., WEST J.K. The Sol-Gel process, Chemical Reviews, 90 (1), 33, 1990.
  • 21. ZAKY R., HESSIEN M., EL-MIDANY A.A., KHEDR M.H., ABDEL-AAL E.A., EL BARAWY K.A. Preparation of silica nanoparticles from semi burned rice straw ash. Powder Technol., 185 (1), 31, 2008.
  • 22. ESPÍNDOLA-GONZALEZ A., FUENTES-RAMIREZ R., MARTÍNEZ-HERNÁNDEZ A.L., CASTAÑO V.M., VELASCO-SANTOS C. Structural Characterization of Silica Particles Extracted from Grass Stenotaphrum secundatum: Biotransformation via Annelids, Advances in Materials Science and Engineering, Volume 2014, Article ID 956945, 7, 2014.
  • 23. SEYED N.A., AHMAD R.D., AMIR J. Synthesis and characterization of LTA nanozeolite using barley husk silica. Material research bulletin, 48 (5), 1753, 2013.
  • 24. TZONG H.L., YANG C.C. Synthesis and surface characteristics of nanosilica produced from alkali extracted rice husk ash. Material science and engineering, 176 (7), 521, 2011.
  • 25. BOGUSH G.H., TRACY M.A., ZUKOSKI C.F. Preparation of monodisperse silica particles: control of size and mass fraction, Journal of Non-Crystalline Solids, 104 (1), 95, 2013.
  • 26. GHORBANI F., HABIBOLLAH Y., MEHRABAN Z.,ÇELIK M.S., GHOREYSHI A.A., ANBIA M. Preparation and characterization of highly pure silica from sedge as agricultural waste and its utilization in the synthesis of mesoporous silica MCM-41. Journal of the Taiwan Institute of Chemical Engineers, 44 (5), 821, 2013.
  • 27. MAHMUD A., MEGAT-YUSOFF P.S.M., AHMAD F., FAREZZUAN A.A. Acid leaching as efficient chemical treatment for rice husk in production of amorphous silica nanoparticles, ARPN Journal of Engineering and Applied Sciences, 11 (22), 13384, 2016.
  • 28. HUI C., FEN W., CONGYUM Z., YUANCHANG S., GUIYUM J., SHILING Y. Preparation of nano silica materials, the concept from wheat straw, Journal of noncrystalline solids, 386 (50-51), 2781, 2010.
  • 29. SINGH D., KUMAR R., KUMAR A., RAI K.N. Synthesis and characterization of rice husk silica, silica-carbon composite and H3PO4 activated silica, Ceramica, 54 (330), 203, 2008.
  • 30. ATHINARAYANAN J., PERIASAMY V.S., ALHAZMI M., ALATIAH K.A., ALSHATWI A.A. Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications, Ceramics International, 41, 275, 2015.
  • 31. SADEK M.O., REDA M.S., AL-BILALI K.R. Preparation and Characterization of Silica and Clay-Silica Core-Shell Nanoparticles Using Sol-Gel Method, Advances in Nanoparticles, 2 (2), 165, 2013.
  • 32. LAZARO A., VAN DE GRIEND M.C., BROUWERS H.J.H., GEUS J.W. The influence of process conditions and Ostwald ripening on the specific surface area of olivine nano-silica. Microporous and Mesoporous Materials, 181, 254, 2013.
  • 33. PHAM T.D., VU C.M., CHOI H.J. Enhanced Fracture Toughness and Mechanical Properties of Epoxy Resin with Rice Husk-based Nano-Silica, Polymer Science, Series A, 59 (3), 437, 2017.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.