PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 2 |

Tytuł artykułu

Forest ecosystem as a source of CO2 during growing season: relation to weather conditions

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Net ecosystem production reflects the potential of the ecosystem to sequestrate atmospheric CO2. Daily net ecosystem production of a mountain Norway spruce forest of the temperate zone (Czech Republic) was determined using the eddy covariance method. Growing season days when the ecosystem was a CO2 source were examined with respect to current weather conditions. During the 2005, 2006, and 2007 growing seasons, there were 44, 65, and 39 days, respectively, when the forest was a net CO2 source. The current weather conditions associated with CO2 release during the growing seasons were: cool and overcast conditions at the beginning or end of the growing seasons characterized by a 3-year mean net ecosystem production of -7.2 kg C ha-1 day-1; overcast or/and rainy days (-23.1 kg C ha-1 day-1); partly cloudy and hot days (-11.8 kg C ha-1 day-1); and overcast and hot days (-13.5 kg C ha-1 day-1). CO2 release was the highest during the overcast or/and rainy conditions (84%, average from all years), which had the greatest impact during the major production periods. As forests are important CO2 sinks and more frequent weather extremes are expected due to climate change, it is important to predict future forest carbon balances to study the influence of heightened variability in climatic variables.

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.239-249,fig.,ref.

Twórcy

autor
  • Global Change Research Centre AS CR, Bilidla 4a, 603 00 Brno, Czech Republic
  • Global Change Research Centre AS CR, Bilidla 4a, 603 00 Brno, Czech Republic
autor
  • Global Change Research Centre AS CR, Bilidla 4a, 603 00 Brno, Czech Republic
autor
  • Global Change Research Centre AS CR, Bilidla 4a, 603 00 Brno, Czech Republic
autor
  • Department of Meteorology, Poznan University of Life Sciences, Piatkowska 94b, 60-649 Poznan, Poland
autor
  • Global Change Research Centre AS CR, Bilidla 4a, 603 00 Brno, Czech Republic

Bibliografia

  • Allan R.P. and Soden B.J., 2008. Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481-1484.
  • Allard V., Ourcival J.M., Rambal S., Joffre R., and Rocheteau A., 2008. Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Glob. Chang. Biol., 14, 714-725.
  • Anthoni P.M., Unsworth M.H., Law B.E., Irvine J., Baldocchi D.D., Van Tuyl S., and Moore D., 2002. Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems. Agric. For. Meteorol., 111, 203-222.
  • Aubinet M., Grelle A., Ibrom A., Rannik U., Moncrieff J., Foken T., Kowalski A.S., Martin P.H., Berbigier P., Bernhofer C., Clement R., Elbers J., Granier A., Grunwald T., Morgenstern K., Pilegaard K., Rebmann C., Snijders W., Valentini R., and Vesala T., 2000. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res., 30, 113-117.
  • Aubinet M., Heinesch B., and Longdoz B., 2002. Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections, heterogeneity of the site and inter-annual variability. Glob. Chang. Biol., 8, 1053-1071.
  • Baldocchi D.D., Vogel C.A., and Hall B., 1997. Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agric. For. Meteorol., 83, 147-170.
  • Barr A.G., Black T.A., Hogg E.H., Griffis T.J., Morgenstern K., Kljun N., Theede A., and Nesic Z., 2007. Climatic controls on the carbon and water balances of a boreal aspen forest, 1994-2003. Glob. Chang. Biol., 13, 561-576.
  • Carrara A., Janssens I.A., Yuste J.C., and Ceulemans R., 2004. Seasonal changes in photosynthesis, respiration and NEE of a mixed temperate forest. Agric. For. Meteorol., 126, 15-31.
  • Chapin III F.S., Woodwell G.M., Randerson J.T., Rastetter E.B., Lovett G.M., Baldocchi D.D., Clark D.A., Harmon M.E., Schimel D.S., Valentini R.,Wirth C., Aber J.D., Cole J.J.,Goulden M.L., Harden J.W., Heimann M., Howarth R.W., Matson P.A., Mc Guire A.D., Melillo J.M., Mooney H.A., Neff J.C., Houghton R.A., Pace M.L., Ryan M.G., Running S.W., Sala O.E., Schlesinger W.H., and Schulze E.D., 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 9, 1041-1050.
  • Chen W.J., Black T.A., Yang P.C., Barr A.G., Neumann H.H., Nesic Z., Blanken P.D., Novak M.D., Eley J., Ketler R.J., and Cuenca A., 1999. Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Glob. Chang. Biol., 5, 41-53.
  • Dewar R.C., Medlyn B.E., and Mc Murtrie R.E., 1999. Acclimation of the respiration photosynthesis ratio to temperature: insights from a model. Glob. Chang. Biol., 5, 615-622.
  • Dore S., Montes-Helu M., Hart S.C., Hungate B.A., Koch G.W., Moon J.B., Finkral A.J., and Kolb T.E., 2012. Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand-replacing fire. Glob. Chang. Biol., 18, 3171-3185.
  • Dušek J., Èížková H., Czerný R., Taufarová K., Šmídová M., and Janouš D., 2009. Influence of summer flood on the net ecosystem exchange of CO2 in a temperate sedge-grass marsh. Agric. For. Meteorol., 149, 1524-1530.
  • Easterling D.R., Meehl G.A., Parmesan C., Changnon S.A., Karl T.R., and Mearns L.O., 2000. Climate extremes: Observations, modeling, and impacts. Science, 289, 2068-2074.
  • Falge E., Baldocchi D., Tenhunen J., Aubinet M., Bakwin P., Berbigier P., Bernhofer C., Burba G., Clement R., Davis K.J., Elbers J.A., Goldstein A.H., Grelle A., Granier A., Gudmundsson J., Hollinger D., Kowalski A.S., Katul G., Law B.E., Malhi Y., Meyers T., Monson R.K., Munger J.W., Oechtel W., U K.T.P., Pilegaard K., Rannik Ü., Rebmann C., Suyker A., Valentini R., Wilson K., and Wofsy S., 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric. For. Meteorol., 113, 53-74.
  • Grote R., Kiese R., Grünwald T., Ourcival J.M., and Granier A., 2011. Modelling forest carbon balances considering tree mortality and removal. Agric. For. Meteorol., 151, 179-190.
  • Gu L., Baldocchi D.D., Wofsy S.C., Munger J.W., Michalsky J.J., Urbanski S.P., and Boden T.A., 2003. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced Photosynthesis. Science, 299, 2035-2038.
  • Gu L., Hanson P.J., Mac Post W., Kaiser D.P., Yang B., Nemani R., Pallardy S.G., and Meyers T., 2008. The 2007 eastern US spring freeze: Increased cold damage in a warming world? Biosci., 58, 253-262.
  • Hikosaka K., 1997. Modelling optimal temperature acclimation of the photosynthetic apparatus in C3 plants with respect to nitrogen use. Ann. Bot., 80, 721-730.
  • Jarvis P. and Linder S., 2000. Botany: constraints to growth of boreal forests. Nature, 405, 904-905.
  • Johnson I.R. and Thornley J.H.M., 1985. Temperature dependence of plant and crop processes. Ann. Bot., 55, 1-24.
  • Kljun N., Black T.A., Griffis T.J., Barr A.G., Gaumont-Guay D., Morgenstern K., McCaughey J.H., and Nesic Z., 2007. Response of net ecosystem productivity of three boreal forest stands to drought. Ecosystems, 9, 1128-1144.
  • Knohl A. and Baldocchi D.D., 2008. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem.
  • J. Geophys. Res.: Biogeosciences, 113(G2), G02023. Kuzyakov Y. and Gavrichkova O., 2010. Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob. Chang. Biol., 16, 3386-3406.
  • Litton C.M., Raich J.W., and Ryan M.G., 2007. Carbon allocation in forest ecosystems. Glob. Chang. Biol., 13, 2089-2109.
  • Malhi Y., Baldocchi D.D., and Jarvis P.G., 1999. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ., 22, 715-740.
  • Marek M.V., Janouš D., Taufarová K., Havránková K., Pavelka M., Kaplan V., and Marková I., 2011. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors. Environ. Pollut., 159, 1035-1039.
  • Misson L., Tang J., Xu M., McKay M., and Goldstein A., 2005. Influences of recovery from clear-cut, climate variability and thinning on the carbon balance of a young ponderosa pine plantation. Agric. For. Meteorol., 130, 207-222.
  • Niyogi D., Chang H.I., Saxena V.K., Holt T., Alapaty K., Booker F., Chen F., Davis K.J., Holben B., Matsui T., Meyers T., Oechel W.C., Pielke Sr R.A., Wells R., Wilson K., and Xue Y., 2004. Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophys. Res. Lett., 31(20), L20606.
  • Oliphant A.J., Dragoni D., Deng B., Grimmond C.S.B., Schmid H-P., and Scott S.L., 2011. The role of sky conditions on gross primary production in a mixed deciduous forest. Agric. For. Meteorol., 151, 781-791.
  • Piao S., Ciais P., Friedlingstein P., Peylin P., Reichstein M., Luyssaert S., Margolis H., Fang J., Barr A., Chen A., Grelle A., Hollinger D.Y., Laurila T., Lindroth A., Richardson A.D., and Vesala T., 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52.
  • Pingintha N.., Leclerc M.Y., Beasley J. P., Durden D., Zhang G., Senthong C., and Rowland D., 2010. Hysteresis response of daytime net ecosystem exchange during drought. Biogeosciences, 7, 1159-1170.
  • Prioul J.L. and Chartier P., 1977. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: A critical analysis of the methods used. Ann. Bot., 41, 789-800.
  • Reichstein M., Ciais P., Papale D., Valentini R., Running S., Viovy N., Cramer W., Granier A., Ogee J., Allard V., Aubinet M., Bernhofer C., Buchmann N., Carrara A., Grunwald T., Heimann M., Heinesch B., Knohl A., Kutsch W., Loustau D., Manca G., Matteucci G., Miglietta F., Ourcival J.M., Pilegaard K., Pumpanen J., Rambal S., Schaphoff S., Seufert G., Soussana J.F., Sanz M.J., Vesala T., and Zhao M., 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Glob. Chang. Biol., 13, 634-651.
  • Reyer C.P.O., Leuzinger S., Rammig A., Wolf A., Bartholomeus R.P., Bonfante A., Lorenzi de F., Dury M., Gloning P., Jaoudé R.A., Klein T., Kuster T.M., Martins M., Niedrist G., Riccardi M., Wohlfahrt G., Angelis de P., Dato de G., François L., Menzel A., and Pereira M., 2013. A plant's perspective of extremes: terrestrial plant responses to changing climatic variability. Glob. Chang. Biol., 19, 75-89.
  • Sánchez G., Serrano A., and Cancillo M.L., 2012. Effect of cloudiness on solar global, solar diffuse and terrestrial downward radiation at Badajoz (Southwestern Spain). Opt. Pura Apl., 45, 33-38.
  • Schwalm C.R., Williams C.A., Schaefer K., Baldocchi D.D.,Black T.A., Goldstein A.H., Law B.E., Oechel W.C., Kyaw Tha Paw U, and Scott R.L., 2012. Reduction in carbon uptake during turn of the century drought in western North America. Nat. Geosci., 5, 551-556.
  • Sevanto S., Suni T., Pumpanen J., Grönholm T., Kolari P., Nikinmaa E., Hari P., and Vesala T., 2006. Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol., 26, 749-757.
  • Špunda V., Kalina J., Marek M.V., and Nauš J., 1997. Regulation of photochemical efficiency of photosystem 2 in Norway spruce at the beginning of winter and in the following spring. Photosynthetica, 33, 91-102.
  • Tjoelker M.G., Oleksyn J., and Reich P.B., 1999. Acclimation of respiration to temperature and CO2 in seedlings of boreal tree species in relation to plant size and relative growth rate. Glob. Chang. Biol., 5, 679-691.
  • Urban O., Janouš D., Acosta M., Czerný R., Marková I., Navrátil M., Pavelka M., Pokorný R., Šprtová M., Zhang R., Špunda V.R., Grace J., and Marek M.V., 2007. Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Glob. Chang. Biol., 13, 157-168.
  • Urban O., Klem K., Aè A., Havránková K., Holišová P., Navrátil M., Zitová M., Kozlová K., Pokorný R., Šprtová M., Tomášková I., Špunda V., and Grace J., 2012. Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Funct. Ecol., 26, 46-55.
  • Valentini R., Matteucci G., Dolman A.J., Schulze E-D., Rebmann C., Moors E.J., Granier A., Gross P., Jensen N.O., Pilegaard K., Lindroth A., Grelle A., Bernhofer C., Grünwald T., Aubinet M., Ceulemans R., Kowalski A.S., Vesala T., Rannik Ü., Berbigier P., Loustau D., Gudmundsson J., Thorgeirsson H., Ibrom A., Morgenstern K., Clement R., Moncrieff J., Montagnani L., Minerbi S., and Jarvis P.G., 2000. Respiration as the main determinant of carbon balance in European forests. Nature, 404, 961-865.
  • Vesala T., Launiainen S., Kolari P., Pumpanen J., Sevanto S.,Hari P., Nikinmaa E., Kaski P., Mannila H., Ukkonen E., Piao S.L., and Ciais P., 2010. Autumn temperature and carbon balance of a boreal Scots pine forest in Southern Finland. Biogeosci., 7, 163-176.
  • Wu Z.T., Dijkstra P., Koch G.W., Penuelas J., and Hungate B.A., 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Chang. Biol., 17, 927-942.
  • Wu J., Linden van der L., Lasslop G., Carvalhais N., Pilegaard K., Beier C., and Ibrom A., 2012. Effects of climate variability and functional changes on the interannual variation of the carbon balance in a temperate deciduous forest. Biogeosci.,9, 13-28.
  • Xenakis G., Ray D., and Mnecuccini M., 2012. Effects of climateand site characteristics on Scots pine growth. Eur. J. For.Res., 131, 427-439.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-88dc2db8-eae7-428c-9553-faa6f1092ff6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.