Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 27 | 1 |

Tytuł artykułu

Multi-criteria optimisation of multi-stage positional game of vessels


Warianty tytułu

Języki publikacji



The paper presents a mathematical model of a positional game of the safe control of a vessel in collision situations at sea, containing a description of control, state variables and state constraints as well as sets of acceptable ship strategies, as a multi-criteria optimisation task. The three possible tasks of multi-criteria optimisation were formulated in the form of non-cooperative and cooperative multi-stage positional games as well as optimal non-game controls. The multicriteria control algorithms corresponding to these tasks were subjected to computer simulation in Matlab/Simulink software based on the example of the real navigational situation of the passing of one’s own vessel with eighteen objects encountered in the North Sea

Słowa kluczowe








Opis fizyczny



  • Gdynia Maritime University, 83 Morska St., 81-225 Gdynia, Poland


  • 1. Kun G. (2001): Stabilizability, controllability, and optimal strategies of linear and nonlinear dynamical games. PhD Thesis. RWTH, Aachen.
  • 2. Stateczny A. (2001): Neural manoeuvre detection of the tracked target in ARPA system. IFAC Conference on Control Applications in Marine Systems Location, University of Strathclyde, Glasgow, 2001, Book Series IFAC, pp. 209–214.
  • 3. Szlapczynski R., Szlapczynska J. (2017): A method of determining and visualizing safe motion parameters of a ship navigating in restricted waters. Ocean Engineering, 129, 363–373.
  • 4. Engwerda J. C. (2005): LQ dynamic optimization and differential games, John Wiley & Sons, New York.
  • 5. Basar T., Bernhard P. (2008): H-Infinity optimal control and related mini-max design problems: A dynamic game approach. Springer, Berlin.
  • 6. Lisowski J. (2012): The optimal and safe ship trajectories for different forms of neural state constraints. Mechatronic Systems, Mechanics and Materials, Book Series: Solid State Phenomena, Vol. 180, pp. 64–69.
  • 7. Miloh T. (1974): Determination of critical maneuvers for collision avoidance using the theory of differential games. Inst. Fur Schiffbau, Hamburg, 1974.
  • 8. Olsder G. J., Walter J. L. (1977): A differential game approach to collision avoidance of ships. Proc. of the 8th IFIP Symp. on Optimization Techniques, Novosibirsk, pp. 264–271.
  • 9. Ehrgott M., Gandibleux X. (2002): Multiple criteria optimization: state of the art annotated bibliographic surveys. Kluwer Academic Press, New York.
  • 10. Ehrgott, M. (2005): Multicriterial optimization. Springer, Berlin.
  • 11. Lisowski J. (2016): The sensitivity of state differential game vessel traffic model. Polish Maritime Research, 2016, Vol. 23(2), 14–18.
  • 12. Wang N., Meng X., Xu Q., Wang Z. (2009): A unified analytical framework for ship domains. The Journal of Navigation, 62(4), 643–655.
  • 13. Wang N. (2013): A novel analytical framework for dynamic quaternion ship domains. The Journal of Navigation, 66(2), 265–281
  • 14. Xu Q., Wang N. (2014): A survey on ship collision risk evaluation. Promet – Traffic & Transportation, 26(6), 475–486.
  • 15. Xu Q., Yang Y., Zhang C., Zhang I. (2018): Deep convolutional neural network-based autonomous marine vehicle maneuver. International Journal of Fuzzy Systems, 20(2), 687–699.
  • 16. Breton M., Szajowski K. (2010): Advances in dynamic games: theory, applications, and numerical methods for differential and stochastic games. Birkhauser, Boston.
  • 17. Eshenauer H., Koski J., Osyczka A. (1999): Multicriteria design optimization: procedures and application. SpringerVerlag, Berlin

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.