PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 157 | 11 |

Tytuł artykułu

Zagrożenia podczas krioprezerwacji osi zarodkowych nasion drzew

Treść / Zawartość

Warianty tytułu

EN
Threats during cryopreservation of seed embryonic axes of woody plants

Języki publikacji

PL

Abstrakty

EN
Cryopreservation in liquid nitrogen (–196°C, LN) is the method of long−term conservation of plant tissues, which has been evolving for many of seed of woody plant species. During cryopreservation protocol to LN in plant cells take place the supercooling tissue water or vitrification, which allows the successful storage. Water content was a significant determining factor with survival of cryostored embryonic axes of woody plants. The protocols of cryopreservation include some steps during preparation of plant material, which could be a source of oxidative stress, phase transition of membranes and destruction in cells.

Wydawca

-

Czasopismo

Rocznik

Tom

157

Numer

11

Opis fizyczny

s.842-853,bibliogr.

Twórcy

autor
  • Pracowania Fizjologii Stresów Abiotycznych, Instytut Dendrologii, Polska Akademia Nauk, ul.Parkowa 5, 62-035 Kórnik
  • Pracowania Fizjologii Stresów Abiotycznych, Instytut Dendrologii, Polska Akademia Nauk, ul.Parkowa 5, 62-035 Kórnik

Bibliografia

  • Alpert P. 2006. Constraints of tolerance: why are desiccation−tolerant organisms so small or rare? Journal of Experimental Biology 209: 1575−1584.
  • Bailly C., El−Maarouf−Bouteau H., Corbineau F. 2008. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies 331: 806−814.
  • Beardmore T., Whittle C. A. 2005. Induction of tolerance to desiccation and cryopreservation in silver maple Acer saccharinum. embryonic axes. Tree Physiology 25: 965−972.
  • Berjak P., Pammenter N. W. 2008. From Avicennia to Zizania: Seed Recalcitrance in Perspective. Annals of Botany 101: 213−228.
  • Bhattacharjee S. 2005. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Current Science 89: 1113−1121.
  • de Carvalho M. H. 2008. Drought stress and reactive oxygen species. Production, scavenging and signaling. Plant Signaling & Behavior 3: 156−165.
  • Charne D. G., Pukacki P. M., Kot L. S., Beversdorf W. D. 1988. Embryogenesis following cryopreservation in isolated microspores of rapeseed Brassica napus L. Plant Cell Reports 7: 407−409.
  • Cheng H. Y., Song S. Q. 2008. Possible involvement of reactive oxygen species scavenging enzymes in desiccation sensitivity of Antiaris toxicaria seeds and axes. Journal of Integrative Plant Biology 50: 1549−1556.
  • Chmielarz P., Michalak M., Pałucka M., Wasileńczyk U. 2011. Successful cryopreservation of Quercus robur plumules. Plant Cell Reports 30 (8): 1405−1414.
  • Ellis R. H., Hong T., Roberts E. H. 1990. An intermediate category of seed storage behaviour? I. Coffee. Journal of Experimental Botany 41: 1167−1174.
  • Engelmann F. 2011. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cellular & Developmental Biology – Plant 47: 5−16.
  • Francini A., Galleschi L., Saviozzi F., Pinzino C., Izzo R., Sgherri C., Navari−Izzo F. 2006. Enzymatic and non−enzymatic protective mechanisms in recalcitrant seeds of Araucaria bidwillii subjected to desiccation. Plant Physiology and Biochemistry 44: 556−563.
  • Gill S. S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909−930.
  • Gonzalez−Benito M. E., Perez C. 1994. Cryopreservation of embryonic axes of two cultivars of hazelnut Corylus avellana L. CryoLetters 15: 41−46.
  • Gonzalez−Benito M. E., Prieto R. M., Herradon E., Martin C. 2002. Cryopreservation of Quercus suber and Quercus ilex embryonic axes: in vitro culture, desiccation and cooling factors. CryoLetters 23: 283−290.
  • Gordon−Kamm W. J., Steponkus P. L. 1984. Lamellar−to−hexagonall, phase transitions in the plasma membrane of isolated protoplasts after freeze−induced dehydration. Proceedings of the National Academy of Sciences USA 81: 6373−6377.
  • Griffith M., Lumb C., Wiseman S. B., Wisniewski M., Johnson R. W., Marangoni A. G. 2005. Antifreeze proteins modify the freezing process in planta. Plant Physiology 138: 330−340
  • Halliwell B. 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology 141: 312−322.
  • Hendry G. A., Finch−Savage W. E., Thorpe P. C., Atherton N. M., Buckland S. M., Nilsson K. A., Seel W. E. 1992. Free radical processes and loss of seed viability during desiccation in the recalcitrant species Quercus robur L. New Phytologist122: 273−279.
  • Hoekstra F. A., Golovina E. A., Buitink J. 2001. Mechanisms of plant desiccation tolerance. Trends in Plant Science 6: 431−438.
  • Hong T. K., Ellis R. H. 2003. Storage. W: Vozzo J. A. [red.]. Tropical Tree Seed Manual. United States Department of Agriculure. 125−136.
  • Jarząbek M., Pukacki P. M., Nuc K. 2009. Cold−regulated proteins with potent antifreeze and cryoprotective activities in spruces Picea sp. Cryobiology 58: 268−274.
  • Juszczyk K., Pukacki P. M. 2011. Effects of desiccation and cryopreservation on viability in vitro of embryonic axes of the suborthodox Fagus sylvatica, orthodox Acer platanoides and recalcitrant A. pseudoplatanus seeds. W: Pukacki P. M. [red.]. 17th Cold Hardiness Seminar, Kórnik, 2011. 53−67.
  • Kamińska−Rożek E., Pukacki P. M. 2005. Effect of freezing desiccation on cold hardiness, ROS, membrane lipid levels and antioxidant status in spruce seedlings. Acta Societatis Botanicorum Poloniae 74: 219−228.
  • Kaviani B. 2011. Conservation of plant genetic resources by cryopreservation. Australian Journal of Crop Science 5: 778−800.
  • Kranner I., Birtic S. 2005. A modulating role for antioxidants in desiccation tolerance. Integrative and Comparative Biology 45: 734−740.
  • Krasuska U., Gniazdowska A., Bogatek R. 2011. Rola ROS w fizjologii nasion. Kosmos 60: 113−128.
  • Leprince O., Vertucci C. W., Hendry G., Atherton N. M. 1995. The expression of desiccation−induced damage in orthodox seeds is a function of oxygen and temperature. Physiologia Plantarum 94: 233−240.
  • Li C., Sun W. Q. 1999. Desiccation sensitivity and activities of free radical scavenging enzymes in recalcitrant Theobroma cacao seeds. Seed Science Research 9: 209−217.
  • Luyet B. J. 1937. Vitrification of organic colloids and protoplasm. Biodynamica 29: 1−15.
  • McCown B. H., Lloyd G. 1981. Woody Plant Medium WPM. −a mineral nutrient formulation for microculture for woody plant species. Hort Science 16: 453.
  • Mikuła A., Jata K., Rybczyński J. J. 2009. Cryopreservation strategies for Cyanthea australis R. BR. Domin. CryoLetters 30: 429−439.
  • Mikuła A., Olas M., Śliwińska M., Rybczyński J. J. 2008. Cryopreservation by encapsulation of Gentiana sp. Cell suspensions maintains re−growth, embryogenic competence and DNA content. CryoLetters 29: 409−418.
  • Mikuła A., Rybczyński J. J. 2006. Krioprezerwacja narzędziem długoterminowego przechowywania komórek, tkanek i organów pochodzących z kultur in vitro. Biotechnologia 75: 145−163.
  • Moller I. M., Jensen P. E., Hansson A. 2007. Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58: 459−481.
  • Normah M. N., Makeen A. M. 2008. Cryopreservation of excised embryos and embryonic axes. W: Reed B. M. [red.]. Plant Cryopreservation: A Practical Guide. 211−241.
  • Panis B., Piette B., Swennen R. 2005. Droplet vitrification of apical meristems: a cryopreservation protocol alicable to all Musaceae. Plant Science 168: 45−55.
  • Phartyal S. S., Thapliyal R. C., Koedam N., Godefroid S. 2002. Ex−situ conservation of rare & valuable forest tree species through seed−gene bank. Current Science 83: 101−107.
  • Pukacka S. 1999. Membrane phospholipid composition during maturation of seeds of Acer platanoides and Acer pseudoplatanus in relation to desiccation tolerance. Acta Physiologia Plantarum 21: 109−115.
  • Pukacka S., Hoffman S. K., Goslar J., Pukacki P. M., Wójkiewicz E. 2003. Water relations in beech F. sylvatica L. seeds and its effect on storage behaviour. Biochimica et Biophysica Acta 1621: 48−56.
  • Pukacka S., Malec M., Ratajczak E. 2011. ROS production and antioxidative system activity in embryonic axes of Quercus robur seeds under different desiccation rate conditions. Acta Physiologia Plantarum 33: 2219−2227.
  • Pukacka S., Pukacki P. M. 1997. Changes in soluble sugars in relation to desiccation tolerance and effects of dehydration on freezing characteristics of Acer platanoides and Acer pseudoplatanus seeds. Acta Physiologia Plantarum 19: 147−154.
  • Pukacki P. M. 2009. Funkcja przeciwzamrożeniowa oraz krioochronna białek AFP – występowanie i znaczenie. W: Pukacki P. M. [red.]. Reakcje roślin na stres niskich temperatur. Bogucki Wydawnictwo Naukowe. 75−86.
  • Pukacki P. M. 2011. Fizjologiczne i molekularne aspekty tolerancji roślin drzewiastych na stres niskich temperatur. W: Jankiewicz L. [red.]. Fizjologia roślin sadowniczych strefy umiarkowanej, t. 2. PWN, Warszawa. 241−273.
  • Pukacki P. M., Jarząbek M., Pukacka S. 2009. Characterization of cryoprotective activity of proteins in Acer, Fagus and Quercus embryonic axes. First International Symposium ‘Cryopreservation in Horticultural Species’, Leuven, Belgium, 5−8 April 2009. 117−117.
  • Pukacki P. M., Juszczyk K. 2014. Desiccation sensitivity and cryopreservation of embryonic axes of two Acer species seeds. CryoLetters.
  • Pukacki P. M., Kendall E. J., McKersie B. D. 1991. Membrane injury during freezing stress to winter wheat Triticum aestivum L. crowns Journal of Plant Physiology 138: 516−21.
  • Roach T., Ivanova M., Beckett R., Minibayeva F., Green I., Pritchard H., Kranner I. 2008. An oxidative burst of superoxide in embryos of recalcitrant sweet chestnut seeds as induced by excision and desiccation. Physiologia Plantarum 133: 131−139.
  • Roberts E. H. 1973. Predicting the storage life of seeds. Seed Science and Technology 1: 499−514.
  • Sakai A. 1960. Survival of the twigs of woody plants at –196°C. Nature 185: 393−394.
  • Sakai A., Engelmann F. 2007. Vitrification, encapsulation−vitrification and droplet−vitrification: a review. CryoLetters 28: 151−172.
  • Song S. Q., Berjak P., Pammenter N. 2004. Desiccation sensitivity of Trichilia dregeana axes and antioxidant role of ascorbic acid. Acta Botanica Sinica 46: 803−810.
  • Suszka B., Tylkowski T. 1981. Storage of acorns of the English oak Quercus robur L. over 1−5 winters. Arboretum Kórnickie 25: 199−229.
  • Tylkowski T. 1989. Short−term storage of after ripened seeds of Acer platanoides L. and A. pseudoplatanus L. Arboretum Kórnickie. 34: 135−141.
  • Varghese B., Naithani S. B. 2008. Oxidative metabolism−related changes in cryogenically stored neem Azadirachta indica A. Juss. seeds. Journal of Plant Physiology 165: 755−765.
  • Varghese B., Sershen, Berjak P., Varghese D., Pammenter N. W. 2011. Differential drying rates of recalcitrant Trichilia dregeana embryonic axes: a study of survival and oxidative stress metabolism. Physiologia Plantarum 142: 326−338.
  • Walters C., Volk P., Stanwood P. C., Towill L. E., Forsline P. L., Koster K. L. 2011. Long−term survival of cryopreserved grmplasm: Contributing factor and assessments from thirty year old experiments. W: Panis B., Lynch P. [red.]. Proc. First IS on Cryopreservation in Hort. Species, Acta Hort. 980, ISHS. 113−120.
  • Wolfe J., Bryant G. 2001. Cellular cryobiology: thermodynamic and mechanical effects. International Journal of Refrigeration 24: 438−450.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-882e6ac5-6f7c-4554-935a-558d34fa6b68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.