PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 73 | 4 |

Tytuł artykułu

Evaluation of anthropometric methods for fat mass measurement in chronic obstructive pulmonary disease patients

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

PL
Background. Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease that causes obstructed airflow from the lungs. The obesity is a global problem, which is set to increase over time. Chronic obstructive lung disease is the third-leading cause of death globally, and both obesity and diet appear to play roles in its pathophysiology (e.g., role in the development of obstructive sleep apnoea and obesity hypoventilation syndrome). However, the effects of obesity on the respiratory system are often underappreciated. Objective. The objective of this study was to compare three anthropometric methods to evaluate of fat mass in COPD patients. Material and Methods. Three anthropometric methods of evaluation fat mass in a group of 60 patients with COPD were compared. To the measurement of fat mass were used: (1) Dual Energy X-ray Absorptiometry method (DEXA), specifically by DEXA densitometer QDR Discovery Wi (S/N 80227) with additional software (Body Composition Analysis); (2) four-frequency bioelectrical impedance analysis (BIA) device Bodystat Quadscan 4000 (Bodystat Ltd, British Isles); (3) skin folds measurement (SFM) with caliper (Harpenden Lange Skinfold Caliper, Cambridge Scientific Industries, Inc. Cambridge, Maryland). The measured values were statistically processed and evaluated in a statistical program Statistica Cz. version 7.1 and Microsoft Office Excel 2010 (Los Angeles, CA, USA). Differences among anthropometric methods of measurement fat mass were tested with one-way analysis of variance (ANOVA). The data were presented as mean ± standard deviation (SD). Results. DEXA method, generally accepted for assessing body composition, showed an average value of 22.48 ±11.32 kg of fat mass, which corresponds in percentage terms to the value of 29.62±9.28. BIA method for the parameter fat mass in the monitored group of COPD patients was found the mean value 25.08±10.14 kg (in percentages 30.85±8.15). An average value 28.50±8.08% of fat mass, was determined from the skinfolds measurements (SFM) and subsequent calculations. When comparing these methods (DEXA, BIA and SFM) used to determine body composition, a statistically insignificant difference was found (P >0.05). Conclusions. In this study a good correlation between three anthropometric methods (DEXA, BIA, SFM) for measuring fat mass in patients with COPD and statistically insignificant differences between them were observed. To better define changes in the nutritional status of patients with COPD using anthropometric methods over time, further studies are needed that also monitor the consequences of clinical status, rehabilitation, and nutritional treatment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

73

Numer

4

Opis fizyczny

p.495-502,fig.,ref.

Twórcy

autor
  • Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr.A.Hlinku 2, 94 976 Nitra, Slovak Republic

Bibliografia

  • 1. Agusti A.G.: Systemic effects of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(4):367–370. https://doi.org/10.1513/pats.200504-026SR
  • 2. Baarends E.M., Schols A.M., Mostert R., Wouters E.F.: Peak exercise response in relation to tissue depletion in patients with chronic obstructive pulmonary disease. Eur Respir J. 1997 Dec;10(12):2807e13.
  • 3. Barnes P.J., Celli B.R.: Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33(5):1165–1185. https://doi.org/10.1183/09031936.00128008
  • 4. Bhatt S.P., Washko G.R., Hoffman E.A., Newell J.D., Bodduluri S., Diaz A.A., Galban C.J., Silverman E.K., Estépar R.J., Lynch D.A.: Imaging Advances in Chronic Obstructive pulmonary Disease. Insights from the Genetic Epidemiology of Chronic Obstructive pulmonary Disease (COPD Gene) Study. Am. J. Respir. Crit. Care Med. 2018;199(3). https://doi.org/10.1164/rccm.201807-1351SO
  • 5. Castelnuovo G., Cuevillas B., Navas-Carretero S., Martínez A.: Body fat mass assessment and obesity classification: a review of the available methods for adiposity estimation. Progr Nutr 2021;23(1):e2021014.doi: 10.23751/pn.v23i1.8664
  • 6. Costa T.M.R.L, Costa F.M., Jonasson T.H., Moreira C.A., Boguszewski C.L., Borba V.Z.C.: Body composition and sarcopenia in patients with chronic obstructive pulmonary disease. Endocrine 2018; 60:95-102. doi: 10.1007/s12020-018-1533-4.
  • 7. Doña E., Olveira C., Javier-Palenque F., Porras N., Dorado A., Martín-Valero R., Godoy A.M., Espíldora F., Contreras V., Olveira G.: Body Composition Measurement in Bronchiectasis: Comparison between Bioelectrical Impedance Analysis, Skinfold Thickness Measurement, and Dual-Energy X-ray Absorptiometry before and after Pulmonary Rehabilitation. J Acad Nutr Diet. 2018;118(8):1464-1473. https://doi.org/10.1016/j.jand.2018.01.013
  • 8. Durnin J.V., Womersley J.: Body fat assessed from total body density and its estimation from skinfold thickness. Br J Nutr 1974;32(1):77-97.
  • 9. Engelen M.P., Schols A.M., Lamers R.J., Wouters E.F.: Different patterns of chronic tissue wasting among patients with chronic obstructive pulmonary disease. Clin Nutr 1999 Oct;18(5):275e80.
  • 10. Gažarová M., Galšneiderová M., Mečiarová L.: Obesity diagnosis and mortality risk based on a body shape index (ABSI) and other indices and anthropometric parameters in university students. Rocz Panstw Hig 2019;70(3):267-275. http://doi.org/10.32394/rpzh.2019.0077
  • 11. Global Initiative for Chronic Obstructive Lung Disease (GOLD): Global Strategy for the Diagnosis, Management and Prevention of COPD 2020. https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINAL-ver1.2-03Dec19_WMV.pdf.
  • 12. Gonzales-Ruíz K., Medrano M., Correa-Bautista J., García-Hermoso A., Prieto-Benavides D., Tordecilla- Sanders A., et al.: Comparison of bioelectrical impedance analysis, slaughter skinfold-thickness equations, and dual-energy X-ray absorptiometry for estimating body fat percentage in Colombian children and adolescents with excess of adiposity. Nutrients. 2018;10:1086. https://doi.org/10.3390/nu10081086.
  • 13. Gosker H.R., Bast A., Haenen G.R., Fischer M.A., van der Vusse G.J., Wouters E.F., et al.: Altered antioxidant status in peripheral skeletal muscle of patients with COPD. Respir Med 2005 Jan;99(1):118e25.
  • 14. Gray-Donald K., Gibbons L., Shapiro S.H., Macklem P.T., Martin J.G.: Nutritional status and mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;153:961–966.
  • 15. Hronek M., Kovarik M., Aimova P., Koblizek V., Pavlikova L., Salajka F., Zadak Z.: Skinfold Anthropometry – The Accurate Method for Fat Free Mass Measurement in COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease. 2013;10(5):597-603.
  • 16. Chao C., Wang R., Wang J., Bunjhoo H., Xu Y., Xiong W.: Body mass index and mortality in chronic obstructive pulmonary disease: a meta-analysis. PLoS One. 2012;7(8):92–99.
  • 17. Chronic Obstructive Pulmonary Disease Among Adults - United States: 2011. Centers for Disease Control and Prevention (CDC). 2012. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6146a2.htm.
  • 18. Ischaki E, Papatheodorou G, Gaki E, Papa I, Koulouris N, Loukides S.: Body mass and fat-free mass indices in COPD: relation with variables expressing disease severity. Chest. 2007;132:164–169.
  • 19. Kyle U.G., Bosaeus I., De Lorenzo A.D., Deurenberg P., Elia M., Gómez J.M., Heitmann B.L., Kent-Smith L., Melchior J.C., Pirlich M., Scharfetter H., Schols A.M., Pichard C.: Bioelectrical impedance analysis. Part I: review of principles and methods. Clin Nutr. 2004;23:1226-1243.
  • 20. Lambert A.A, Putcha N., Drummond M.B., Boriek A.M., Hanania N.A.,Kim V., Kinney G.L., McDonald M.L.N., Brigham E.P., Wise R.A., et al.: Obesity is associated with increased morbidity in moderate to severe COPD. Chest. 2017;151(1):68–77.
  • 21. Leech J. A., Dulberg C., Kellie S., et al.: Relationship of lung function to severity of osteoporosis in women. Am. Rev. Respir. Dis 1990;141:68-71.
  • 22. Matthie J.R.: Bioimpedance measurements of human body composition: critical analysis and outlook. Expert Rev Med Devices. 2008;5:239-261.
  • 23. Mattsson S., Thomas B.J.: Development of methods for body composition studies. Phys Med Biol. 2006;51:R203-R228.
  • 24. Maltais F., Decramer M., Casaburi R., ATS/ERS Ad Hoc Committee on Limb Muscle Dysfunction in COPD, et al.: An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189(9):e15-62–e62.https://doi.org/10.1164/rccm.201402-0373ST
  • 25. Meral R., Ryan B.J., Malandrino N., Jalal A., Neidert A.H., Muniyappa R., Akıncı B., Horowitz J.F., Brown R.J., Oral E.A.: “Fat Shadows” From DXA for the Qualitative Assessment of Lipodystrophy: When a Picture Is Worth a Thousand Numbers. Diabetes Care. 2018;41(10):2255–2258. doi:10.2337/dc18-0978
  • 26. Mostert R., Goris A., Weling-Scheepers C., Wouters E.F., Schols A.M.: Tissue depletion and health related quality of life in patients with chronic obstructive pulmonary disease. Respir Med 2000 Sep;94(9):859e67.
  • 27. NHLBI Obesity Education Initiative: The Practical Guide Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. 2000. NIH Publication Number 00-4084. https://www.google. com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwilua7Ot7n6AhWDKewKHZhvDGwQFnoECBkQAQ&url=https%3A%2F%2Fwww.nhlbi.nih.gov%2Ffiles%2Fdocs%2Fguidelines%2Fprctgd_c.pdf&usg=AOvVaw1eZeHdkXmwJc-YA-0U0XwU
  • 28. Perini T.A., de Oliviera G.L., Ornellas J.S., de OlivieraF.P.: Cálculo do error tecnico en la medición deantropometria. Rev Bras Med Esporte 2005;11(1).https://doi.org/10.1590/S1517-8692200500010000929. Rutten E.P.A., Calverley P.M., Casaburi R., Agusti A.,Bakke P., CelliB., Coxson H.O., Crim C., Lomas D.A., Macnee W., et al.: Changes inbody composition inpatients with chronic obstructive pulmonary dis-ease: do they influence patient-related outcomes? Ann Nutr Metab.2013;63(3):239–47.
  • 30. Seung, S. P., Soo L., Hoyoun K., Kyoung M.K.: Comparison of two DXA Systems, Hologic Horizon W and GE Lunar Prodigy, for Assessing Body Composition in Healthy Korean Adults. Endocrinol Metab (Seoul). 2021;36(6):1219-1231. doi: 10.3803/EnM.2021.1274
  • 31. Schols A.M., Broekhuizen R., Weling-Scheepers C.A., Wouters E.F.: Body composition and mortality in chronic obstructive pulmonary disease. Am J Clin Nutr. 2005;82:53–59.
  • 32. Schols A.M., Ferreira I.M., Franssen F.M., et al.: Nutritional assessment and therapy in COPD: a European Respiratory Society statement. Eur Respir J. 2014;44:1504–1520.
  • 33. Siri W. E.: Body composition from fluid space and density. In Brozek J., Hanschel A., et al.: Techniques for measuring body composition. Washington, D.C.: National Academy of Science 1961:223-244.
  • 34. Souza R.M.P., Cardim A.B., Maia T.O., Rocha L.G., Bezerra S.D.: Inspiratory muscle strength, diaphragmatic mobility, and body composition in chronic obstructive pulmonary disease. Physiotherapy Research International. 2019;24(2). https://doi.org/10.1002/pri.1766
  • 35. Steiner M.C., Barton R.L., Singh S.J., Morgan M.D.L.: Bedside methods versus dual energy X-ray absorptiometry for body composition measurement in COPD. Eur Respir J 2002;19:626-631.
  • 36. Steuten L.M.G., Creutzberg E.C., Vrijhoef H.J.M., Wouters E.F.: COPD as a multicomponent disease: inventory of dyspnoea, underweight, obesity and fat free mass depletion in primary care. Prim Care Respir J.2006;15(2):84–91.
  • 37. St-Onge M.P., Wang J., Shen W., Wang Z., Allison D.B., Heshka S., Pierson R.N., Heymsfield S.B.: Dual-energy x-ray absorptiometry-measured lean soft tissue mass: differing relation to body cell mass across the adult life span. J. Gerontol. A Biol. Sci. Med. Sci. 2004;59(8):796–800. doi:10.1093/gerona/59.8.B796. PMID 15345728
  • 38. Sverzellati, N. Cademartiri, F.: Body Composition at CT in Chronic Obstructive Pulmonary Disease: Regional Analysis Is Worthwhile. Radiology 2021;299(3):712-714. https://doi.org/10.1148/radiol.2021204737
  • 39. Thibault R., Genton L., Pichard C.: Body Composition: Why, when and for who? Clinical Nutrition 2012;31(4):435-447. https://doi.org/10.1016/j. clnu.2011.12.011
  • 40. Vermeeren M.A., Creutzberg E.C., Schols A.M., Postma D.S., Pieters W.R., Roldaan A.C., et al.: Prevalence of nutritional depletion in a large out-patient population of patients with COPD. Respir Med 2006 Aug;100(8):1349e55.
  • 41. Vestbo J., Prescott E., Almdal T., et al.: Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med. 2006;173:79–83.
  • 42. Vogelmeier C., Agusti A., Anzueto A.: GOLD Science Committee Members. Global Strategy for Diagnosis, Management and Prevention of COPD (2021 Report). © 2020, Global Initiative for Chronic Obstructive Lung Disease, available from www.goldcopd.org, published in Fontana, WI, USA.
  • 43. Wang J., Thornton J.C., Kolesnik S., Pierson JR R.N.: Anthropometry in Body Composition: An Overview. Annals of the New York Academy of Science; 2000;904:317-326.
  • 44. White J.V., Guenter P., Jensen G., Malone A., Schofield M.: Consensus Statement: Academy of Nutrition and Dietetics and American Society for parenteral and enteral nutrition. J Parenter Enteral Nutr. 2012;36:275–283.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-88281049-0682-4bdc-bc78-7600fa1446a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.