PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 66 | 4 |

Tytuł artykułu

The role of Aegilops species in the origin and improvement of common wheat

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Udział gatunków Aegilops w powstaniu i doskonaleniu pszenicy zwyczajnej

Języki publikacji

EN

Abstrakty

EN
Some Aegilops species participated in wheat evolution playing a major role in wheat domestication and therefore the genus Aegilops represents a big part of the additional gene pool determining important traits of wheat. Breeders have been using these genes for many years to produce improved cultivars. Wide crosses between its wild relatives are sources of desirable characteristics for genetic improvement of common wheat. Triticum aestivum evolution and methods for transfer of alien material into wheat, briefly reviewed in this article, include incorporation of the whole genomes, single chromosomes, small chromosomal segments, single genes and cytoplasm substitution in wheat.
PL
Niektóre gatunki Aegilops brały udział w ewolucji pszenicy zwyczajnej, odgrywając ważną rolę w jej udomowieniu, dlatego rodzaj Aegilops stanowi dużą część dodatkowej puli genów warunkujących ważne cechy użytkowe dla pszenicy. Hodowcy od lat wykorzystują te geny do tworzenia nowych doskonalszych odmian pszenicy. Krzyżowania oddalone napotykają na szereg barier niekrzyżowalności, które należy pokonać, aby uzyskać mieszańce, a następnie wyselekcjonować z nich linie charakteryzujące się pożądanymi cechami dzikich krewniaków pszenicy. W artykule przedstawiono doniesienia na temat ewolucji pszenicy zwyczajnej oraz główne metody i techniki umożliwiające transfer materiału genetycznego gatunków Aegilops do pszenicy, w tym dodawanie całych genomów, pojedynczych chromosomów, fragmentów chromosomów, pojedynczych genów oraz substytucję cytoplazmy w pszenicy.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

66

Numer

4

Opis fizyczny

p.7-14,ref.

Twórcy

autor
  • Subdepartment of Plant Biology, Faculty of Agricultural Sciences, University of Life Sciences in Lublin, Szczebrzeska 102, 22-400 Zamosc, Poland

Bibliografia

  • Feldman M. Gene transfer from wild species into cultivated plants. Genetics. 1983; 15(2): 145–161.
  • Kimber G, Feldman M. Wild Wheat: An Introduction. College of Agriculture, University of Missouri, Columbia, Special Report. 1987; 353: 1–146.
  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Özkan H. Aegilops. [In:] Wild crop relatives: genomic and breeding resources cereals. Chittaranjan Kole (ed.), Springer-Verlag Berlin, Heidelberg, 2011: 1–76.
  • Millet E, Avivi Y, Zaccani M, Feldman M. 1988. The effect of substitution of chromosome 5S of Aegilops longissima for its wheat homoeologus on spike morphology and on several quantitative traits. Genome. 1988; 30: 473–478.
  • Blüthner WD, Schumann E. Use of Aegilops and tetraploid wheat for wheat protein improvement. Hod Roślin Aklim Nasien. 1988; 32 (1/2): 203–206.
  • Pestsova EG, Börner A, Röder MS. Development of a set of Triticum aestivum-Aegilops tauschii introgression lines. Hereditas. 2001; 135 (2–3): 139–143. http://doi:10.1111/j.1601-5223.2001.00139.x
  • Prażak R. Porównanie zawartości białka w ziarnie gatunków Aegilops i Triticum. / Comparision of protein content in the grain of Aegilops and Triticum. Zesz Probl Post Nauk Rol. 2004; 497: 509–516. (in Polish)
  • Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Resour Crop Evol. 2009; 56: 53–64. http://doi:10.1007/s10722-008-9344-8
  • Frauenstein K, Hammer K. Prüfung von Aegilops – Arten auf Resistenz gegen Echten Mehltau, Erysiphe graminis D. C., Braunrost, Puccinia recondita Rob. ex Desm. und Spelzenbraune, Septoria nodorum Berk. Kulturpflanze 1985; 33: 155–163. (in German)
  • Stefanowska G, Prażak R, Strzembicka A, Masłowski J. Transfer genów z Aegilops ventricosa Tausch. i Aegilops juvenalis (Thell.) Eig. do Triticum aestivum L. / Gene transfer from of Aegilops ventricosa Tausch. and Aegilops juvenalis (Thell.) Eig. to Triticum aestivum L. Biul IHAR 1995; 194 : 45–52. (in Polish)
  • Prażak R. Evaluation of brown rust (Puccinia recondita f. sp. tritici) infection in Aegilops species and Triticum aestivum L. cv. Gama. J Appl Genet. 1997; 38 B: 123–127.
  • Özgen M, Yildiz M, Ulukan H, Koyuncu N. Association of gliadin protein pattern and rust resistance derived from Aegilops umbellulata Zhuk. in winter Triticum durum Desf. Breed Sci. 2004; 54: 287–290.
  • Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A. Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet. 2004; 108: 586–591. http://doi:10.1007/s00122-003-1477-8
  • Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal HS. Transfer of leaf rust and strip rust resistance from Aegilops umbellulata Zhuk. to bread wheat (Triticum aestivum L.). Genet ResourCrop Evol. 2008; 55: 849–859. http://doi:10.1007/s10722-007-9289-3
  • Bossolini E, Krattinger SG, Keller B. Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet. 2006; 113: 1049–1062. http://doi:10.1007/s00122-006-0364-5
  • Kuraparthy V, Sood S, Chluneja P, Dhaliwal SH, Kaur S, Bowden RL, Gill BS. A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci. 2007; 47: 1995–2003. http://doi: 10.2135/cropsci2007.01.0038
  • Kuraparthy V, Chluneja P, Dhaliwal SH, Kaur S, Bowden RL, Gill BS. Characterization and maping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet. 2007; 114: 1379–1389. http://doi:10.1007/s00122-007-0524-2
  • Marais GF, McCallum B, Snyman JE, Pretorius ZA, Marais AS. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed. 2005; 143: 115–123. http://doi:10.1007/s10681-006-9092-9
  • Marais GF, McCallum B, Marais AS. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica. 2006; 149: 373–380. http://doi:10.1007/s10681-006-9092-9
  • Marais GF, McCallum B, Marais AS. Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina. Plant Breed. 2008; 127 (4): 340–345. http://doi:10.1111/j.1439-0523.2008.01513.x
  • Marais GF, Marais AS, McCallum B, Pretorius ZA. Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci. 2009; 49 (3): 871-879. http://doi:10.2135/cropsci2008.06.0317
  • Marais GF, Badenhorst PE, Eksteen A, Pretorius ZA. Reduction of Aegilops sharonensis chromatin associated with resistance genes Lr56 and Yr38 in wheat. Euphytica. 2010; 171 (1): 15–22. http://doi:10.1007/s10681-009-9973-9
  • Spetsov P, Mingeot D, Jacquemin JM, Samardijeva K, Marinova E. Transfer of powdery mildew resistance from Aegilops variabilis into bread wheat. Euphytica. 1997; 93: 49–54.
  • Stoilova T, Spetsov P. Chromosome 6U from Aegilops geniculata Roth carrying powdery mildew resistance in bread wheat. Breed Sci. 2006; 56: 351–357.
  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet. 2007; 114 (8), 1451–1456. http://doi:10.1007/s00122-007-0530-4
  • Doussinault G, Delibes A, Sanchez-Monge R, Garcia-Olmedo F. Transfer of a dominant gene for resistance to eyespot disease from a wild grass to hexaploid wheat. Nature. 1983; 303: 698–700.
  • Thiele A, Schumann E, Peil A, Weber WE. Eyespot resistance in wheat x Aegilops kotschyi backcross lines. Plant Breed. 2002; 121: 29–35. http://doi:10.1046/j.1439-0523.2002.00669.x
  • Tadesse W, Hsam SLK, Wenzel G, Zeller FJ. Identification and monosomic analysis of tan spot resistance genes in synthetic wheat lines (Triticum turgidum L. × Aegilops tauschii Coss.). Crop Sci. 2006; 46: 1212–1217.
  • Martín-Sánchez JA, Gómez-Colmenarejo M, Del Moral J, Sin. E, Montes MJ, González-Belinchón C, López-Braña I, Delibes A. A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet. 2003; 106: 1248–1255.
  • Montes MJ, Andrés MF, Sin E, Lόpez- Braña I, Martin-Sánchez JA, Romero MD, Delibes A. Cereal cyst nematode resistance conferred by the Cre7 gene from Aegilops triuncialis and its relationship with Cre genes from Australian wheat cultivars. Genome. 2008; 51(5): 315–319. http://doi:10.1139/G08-015
  • Coriton O, Barloy D, Huteau V, Lemoine J, Tanguy A, Jahier J. Assignment of Aegilops variabilis Eig chromosomes and translocations carrying resistance to nematodes in wheat. Genome. 2009; 52 (4): 338–346. http://doi:10.1139/g09-011
  • Gatford KT, Hearnden P, Ogbonnaya F, Eastwood RF, Halloran GM. Novel resistance to pre-harvest sprouting in Australian wheat from the wild relative Triticum tauschii. Euphytica. 2002; 126: 67–76.
  • Shimshi D, Mayoral ML, Atsmon D. 1982. Response to water stress in wheat and related wild species. Crop Sci. 1982; 22: 123–128.
  • Farooq S, Iqbal N, Asghar M, Shah TM. Intergeneric hybridization for wheat improvement – IV. Expression of salt tolerance gene (s) of Aegilops cylindrica in hybrids with hexaploid wheat. Cer Res Comm. 1992; 20(1–2): 111–118.
  • Berzonsky WA, Kimber G. The tolerance to aluminium of Triticum N-genome amphiploides. Plant Breed. 1989; 103: 37–42.
  • Chełkowski J, Stępień Ł, Błaszczyk L. Możliwości wykorzystania markerów DNA w hodowli odpornościowej pszenicy. Hod Roślin Nasien. 2004; 2: 8–13. (in Polish)
  • Goncharov NP, Golovnina KA, Kilian B, Glushkov S, Blinov A, Shumny VK. Evolutionary history of wheats – the main cereal of mankind. [In:] Biosphere origin and evolution (ed.) DN Springer. 2008; 6: 407–419.
  • Gulbitti-Onarici S, Sumer S, Ozcan S. Phylogenetic relationships among some wild wheat species revealed by AFLP markers. Bot J Linn Soc. 2007; 153: 67–72.
  • Huang Z, Long H, Wei YM, Qi PF, Yan ZH., Zheng YL. Characterization and classification of g-gliadin multigene sequences from Aegilops section Sitopsis. Cereal Res Commun. 2010; 38(1): 1–14. http://doi:10.1556/CRC.38.2010.1.1
  • Watanabe N, Sugiyama K, Yamagishi Y, Sakata Y. Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheat. Hereditas. 2010; 137(3): 180–185. http://doi:10.1034/j.1601-5223.2002.01609.x
  • Watanabe N, Takesada N, Shibata Y, Ban T. Genetic mapping of the genes for glaucous Lear and tough rachis in Aegilops tauschii, the D-genome progenitur of wheat. Euphytica. 2005; 144; 119–123. http://doi:10.1007/s10681-005-5193-0
  • Watanabe N, Fuji Y, Kato N, Ban T, Martinek P. Microsatellite mapping of the genes for brittle rachis on homoeologous group 3 chromosomes in tetraploid and hexaploid wheats. J Appl Genet. 2006; 47(2): 93–98.
  • Zhang L, Liu D, Lan X, Zheng Y, Yan Z. A synthetic wheat with 56 chromosomes derived from Triticum turgidum and Aegilops tauschii. J Appl Genet. 2008; 49(1): 41–44.
  • Haider N. Evidence for the origin of the B genome of bread wheat based on chloroplast DNA. Turk. J Agric For. 2012; 36: 13–25. http://doi:10.3906/tar-1011-1394
  • Zaharieva M, Monneveux P. Spontaneous hybridization between bread wheat (Triticum aestivum L.) and its wild relatives in Europe. Crop Sci. 2005; 46 (2): 512–527.
  • Prażak R. Cross direction for successful production of F1 hybrids between Triticum and Aegilops species. Plant Breed Seed Sci. 2001; 45(1): 83–86.
  • Stefanowska G, Prażak R, Kosińska D. Hybrids of Aegilops cylindrica Host., Aegilops juvenalis (Thell.) Eig. and Aegilops triaristata Willd. 6x with Triticum aestivum L. Plant Breed Seed Sci. 1998; 42/ 2: 3–18.
  • Sharma HC. How wide can a wide cross be? Euphytica 1995; 82: 43–64.
  • Lein A. Die genetische Grundlage der Kreuzbarkeit Zwischen Weizen und Roggen. Z. Vererbungsl. 1943; 81: 28–61.
  • Krolow KD. Untersuchungen über die Kreuzbarkeit zwischen Weizen und Roggen. Z. Pflanzenzücht. 1970; 6: 44–72.
  • Luo MC, Yen C, Yang JL. Crossability percentages of bread wheat landraces from Shanxi and Henan provinces China with rye. Euphytica. 1993; 67: 1–8.
  • Pilch J. Możliwości wykorzystania krzyżowania introgresywnego w hodowli pszenicy ozimej Triticum aestivum L.
  • Część I. Zastosowanie systemów genetycznych pszenicy T. aestivum L. do otrzymania mieszańców pomostowych F1. / Possibilities of using of introgressive hybridization in breeding of winter wheat T. aestivum L. Part I. Utilization of the genetic systems of wheat T. aestivum L. for obtaining the F1-bridge hybrids. Biul. IHAR 2005; 235: 31–41. (in Polish)
  • Tiwari VK, Rawat N, Neelam K, Randhawa G, Singh K, Chuneja P, Dhaliwal HS. Development of Triticum turgidum subsp. durum-Aegilops longissima amphiploids with high iron and zinc content through unreduced gamete formation in F1 hybrids. Genome. 2008; 51(9): 757–766. http://doi:10.1139/G08-057
  • Özkan H, Tuna M, Arumuganathan K. Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J Heredity. 2003; 94(3): 260–264. http://doi: 10.1093/jhered/esg053
  • Tyankova ND, Zagorska NA, Dimitrov B. Callus induction and organogenesis in wheat/Aegilops longissima chromosome addition lines. Plant Cell, Tissue and Organ Culture. 2003; 72: 193–197.
  • Fukuda K, Sakamoto S. Studies on unreduced gamete formation in hybrids between tetraploids wheats and Aegilops squarrosa. Hereditas. 1992; 116: 253–255.
  • Schneider A., Linc G., Molnár I., Molnár-Láng M. Molecular cytogenetic characterization of Aegilops biuncialis and identification of five derived wheat – Aegilops biuncialis disomic chromosome addition lines. Genome. 2005; 48: 1070–1082. http://doi:10.1139/g05-062.
  • Adonina IG, Salina EE, Efremova TT, Pshenichnikova TA. The study of introgressive lines of Triticum aestivum x Aegilops speltoides by in situ and SSR analyses. Plant Breed. 2004; 123(3): 220–224.
  • Zhu Z, Zhou R, Kong X, Dong Y, Jia J. Microsatellite marker identification of a Triticum aestivum – Aegilops umbellulata substitution line with powdery mildew resistance. Euphytica. 2006; 150(1–2): 149–153. http://dx.doi:org/10.1007/s10681-006-9103-x
  • Delibes A., Lόpez-Brañ I., Moreno-Vázquez S., Martin-Sanchez J.A. Reviev. Characterization and selection of hexaploid wheats containing resistance to Heterodera avenae or Mayetiola destructor introgressed from Aegilops. Spanish J Agr Res. 2008; 6: 81–87.
  • Dvorak J, Deal KR, Luo MC. Discovery and mapping of wheat Ph 1 suppressors. Genetics. 2006; 174(1): 17–27. http://doi:10.1534/genetics.106.058115
  • Dover GA, Riley R. Prevention of pairing of homoeologous meiotic chromosomes of wheat by an activity of supernumerary chromosomes of Aegilops. Nature. 1972; 240: 159–161.
  • Riley R, Chapman V, Miller TE. The determination of meiotic chromosome pairing. Proc. 4th Int.Wheat Genet. Symp. Univ. Columbia. MO. 1973: 731–738.
  • Sears ER. 1954. The systematic, cytology and genetics of wheat. Res Bull Mis Agric Exptl Stat. 1954; 572: 1–58.
  • Riley R, Chapman V, Johnson R. Introduction of yellow rust resistance of Aegilops comosa in wheat by genetically induced homoeologous recombination. Nature. 1968; 217: 383–384.
  • Fernández-Calvín B, Orellana J. Metaphase-I bound-arm frequency and genome analysis in wheat-Aegilops hybrids. 1. Ae. variabilis-wheat and Ae. kotschyi-wheat hybrids with low and high homoeologous pairing. Theor Appl Genet. 1991; 83: 264–272.
  • Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS. Ph-I-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica. 2002; 127: 377–382.
  • Sears ER. Transfer of alien genetic material to wheat. P. 75–89. [In:] Evans L.T. Peacock W.J. (eds). Wheat Science – Today and Tomorrow. Cambridge University Press, Cambridge; 1981.
  • Molnár I, Benavente E, Molnár-Láng M. Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum –Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome. 2009; 52(2): 156–165. http://doi:10.1139/G08-114
  • Driscoll C.J., Jensen N.F. A genetic method for detecting induced intergeneric translocations. Genetics. 1963; 48: 459–468.
  • Sears ER. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol. 1956; 9: 1–22.
  • Endo TR, Tsunewaki K. Sterility of common wheat with Aegilops triuncialis cytoplasm. J Hered. 1975; 66: 13–18.
  • Endo T.R. Selective gametocidal action of a chromosome of Aegilops cylindrica in a cultivar of common wheat. Wheat Inf Serv. 1979; 50: 24–28.
  • Kynast RG., Friebe B, Gill BS. Fate of multicentric and ring chromosomes induced by a new gametocidal factor located on chromosome 4 Mg of Aegilops geniculata. Chrom Res. 2000; 8: 133–139.
  • Endo, TR. Two types of gametocidal chromosome of Aegilops sharonensis and Aegilops longissima. Jn J Genet. 1985; 60: 125–135.
  • Marais GF., Bekker TA, Eksteen A, McCallum B, Fetch T, Marais AS. Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides. Euphytica. 2010; 171 (1): 71–85.
  • Friebe B, Zhang P, Nasuda S, Gill BS. Characterization of a knock-out mutation at the Gc2 locus in wheat. Chromosoma. 2003; 111: 509–517. http://doi:10.1007/s00412-003-0234-8
  • Feldman M. Cytogenetic and molecular approaches to alien gene transfer in wheat. Proc. of the Seventh Int. Wheat Genet Symp. 1988; 1: 23–32.
  • Hoffman W, Mudra A, Plarre W. Ogólna hodowla roślin. PWRiL, Warszawa; 1976. (in Polish)
  • Kihara H. Wheat studies – retrospect and prospects. Elsevier Scientific Publishing Company, Amsterdam, 1982.
  • Tsunewaki K, Endo TR, Mukai Y. Further discovery of alien cytoplasms inducing haploids and twins in common wheat. Theor Appl Genet. 1974; 45 (3): 104–109.
  • Blachshaw RE, Harker KN, Clayton GW, O’Donovan J.T. Broadleaf herbicide effects on clethodim and quizalofop-P efficacy on volunteer wheat (Triticum aestivum). Weed Technology 2006; 20 (1): 221–226.
  • Helguera M, Vanzetti L, Soria M, Khan IA, Kolmer J, Dubcovsky J. PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2005; 45: 728–734. http://escholarship.org/uc/item/0991z3tb
  • Gupta SK, Charpe A, Koul S, Prabhu KV, Ha QMR. Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf rust- resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome. 2005; 48 (5): 823–830. http://doi:10.1139/g05-051
  • Golovnina KA, Glushkov SA, Blinov AG, Mayorov VI, Adkinson LR, Goncharov NP. Molecular phylogeny of the genus Triticum L. Plant Syst Evol. 2007; 264: 195–216. http://doi:10.1007/s00606-006-0478-x
  • Haider N, Nabulski I. Identification of Aegilops L. species and Triticum aestivum L. based on chloroplast DNA. Genet Resour Crop Evol. 2008; 55: 537–549. http://doi:10.1007/s10722-007-9259-9
  • Gulbitti-Onarici S, Sancak C, Sumer S, Ozcan S. Phylogenetic relationships of some wild wheat species based on the internal transcribed spacer sequences of nrDNA. Curr Sci. 2009; 96(6): 794–800.
  • Song W, Xie H, Liu Q, Chaojie X, Ni Z, Yang T, Sun Q, Liu Z. Molecular identification of Pm 12 – carrying introgression lines in wheat using genomic and EST-SSR markers. Euphytica. 2007; 158: 95–102. http://doi:10.1007/s10681-007-9432-4
  • Loeb T.A., Spring L.M., Steck T. R., Reynolds T.L. Transgenic wheat (Triticum spp.). [In:] Biotechnology in Agriculture and Forestry 46. Transgenic Crops I. Bajaj Y.P.S. (ed.). Springer-Verlag Berlin Heidelberg, 2000: 14–36.
  • Akhunov E, Akhunova A, Dvorak J. BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat. Theor Appl Genet. 2005; 111: 1617–1622. http://doi:10.1007/s00122-005-0093-1

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8804d752-980a-4232-a4e9-d7e0de6b334a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.