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A b s t r a c t

Some Aegilops species participated in wheat evolu-
tion playing a major role in wheat domestication and therefore 
the genus Aegilops represents a big part of the additional gene 
pool determining important traits of wheat. Breeders have been 
using these genes for many years to produce improved cultivars. 
Wide crosses between its wild relatives are sources of desira-
ble characteristics for genetic improvement of common wheat. 
Triticum aestivum evolution and methods for transfer of alien 
material into wheat, briefly reviewed in this article, include in-
corporation of the whole genomes, single chromosomes, small 
chromosomal segments, single genes and cytoplasm substitu-
tion in wheat. 
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Aegilops species as a source of valuable
traits for common wheat
In the last few decades, the biodiversity of culti-

vated wheat varieties has become significantly impove-
rished. It can be increased by introducing economically 
important genes from wild species, including genes 
from the genus Aegilops, to the wheat genome [1] The 
Aegilops and Triticum genera belong to the same family 
of grasses (Poaceae). Aegilops species are annual gras-
ses characterized by strong tillering, found mainly in 
the Mediterranean Basin, southern Asia, the mountains 
of the Caucasus and Kashmir, and the Near East. They 
grow at various altitudes, from 0 to 2,000 m, in dry and 
degraded environments, at field edges, on roadsides, in 
grassland, and in or near cultivated fields [2, 3]. 

Aegilops species are a source of valuable traits 
for wheat, including long ears [4]; a high content of 
protein, the amino acid lysine, and the macronutrients 
iron and zinc in the kernels [5, 6, 7, 8]; resistance to 

rust [9,10,11,12,13,14,15,16,17,18,19,20,21,22], to 
powdery mildew (Blumeria graminis) [23,24,25], 
to eyespot (Pseudocercosporella herpotrichoides) 
[26,27], to tan spot (Pyrenophora tritici-repentis) [28], 
to nematodes and insects [29,30,31], and to pre-harvest 
sprouting [32]; and tolerance for soil salinity, drought 
[33,34] and soil acidification [35,10]. 

An example of the transfer of beneficial traits 
from Aegilops species to cultivated wheat is the trans-
location from Ae. ventricosa introduced in France to the 
winter variety VPM1, conferring resistance – owing to 
the genes Pch1 and Pch2 – to eyespot, caused by Pseu-
docercosporella herpotrichoides [26]. In Great Brita-
in an enzyme marker of the eyespot resistance gene 
was developed and the Rendezvous variety was pro-
duced, which is found in the lineage of many British, 
French, German and Swiss winter wheats as well as 
in Australian and North American wheats. In addition 
to resistance to Pseudocercosporella herpotrichoides, 
a translocation from Ae. ventricosa was also found to 
occur in these varieties, on chromosome 2B, containing 
a group of three rust resistance genes: Lr 37, Yr 17 and 
Sr 38 [36].

The role of Aegilops species
in the evolution of common wheat
Both selection by man and natural cross-bree-

ding between primitive wheats and wild grasses of 
the genus Aegilops occurring as weeds in wheat crops 
have played a significant role in the evolution of wheat. 
Some researchers estimate that hexaploid wheats evo-
lved over 10,000 years [37]. The donor of the A geno-
me for common wheat is probably the diploid wheat
T. urartu [38]. The origin of the B genome is still a mat-
ter of controversy. H u a n g  et al. [39] believe it to be 
similar to the S genome of Aegilops species belonging 
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to the Sitopsis section. The S genome of Ae. speltoides 
is most similar to the B genome of polyploid wheats. 
This can be seen in the fact that the brittle rachis gene 
Br3 has the same position on the short arm of chromo-
some 3S in Ae. speltoides [40] and on the short arm 
of chromosome 3B in the tetraploid wheat T. durum
[41,42]. The locus of another brittle rachis gene, Br2, 
was localized on the short arm of chromosome 3A in 
T. durum [42]. The B genome, which originated in Ae. 
speltoides, probably underwent a secondary modifica-
tion in wheat [43]. Tetraploid wheats (AABB) emer-
ged as the result of chance pollination of Ae. speltoides 
with T. urartu pollen. Later, the number of chromoso-
mes in the resulting hybrid must have doubled spon-
taneously. DNA analysis by H a i d e r  [44] revealed 
high similarity of the S genome of Ae. speltoides to the 
B genome of tetraploid and hexaploid wheat. Hexa-
ploid wheats are presumed to have arisen from chance 
pollination of the tetraploid wheat T. dicoccoides with 
pollen of the diploid goatgrass Ae. squarrosa (Ae. tau-
schii) (DD), followed by spontaneous doubling of the 
number of chromosomes or the pairing of unreduced 
gametes in the resulting hybrid. Thus, they are natural 
amphiploids. The similarity between the D genomes 
of wheat and Ae. squarrosa can be seen in the posi-
tion of the Br1 brittle rachis gene on the short arm of 
chromosome 3D of T. aestivum and of the gene Brt 
on the short arm of chromosome 3D in Ae. squarrosa
(Ae. tauschii) [41,42]. 

Methods and techniques of gene transfer 
from Aegilops species to common wheat

Some Aegilops species occurring as weeds in 
wheat crops or on unploughed land between fields can 
spontaneously cross breed with common wheat [45]. 
The effectiveness of such spontaneous cross-breedings 
is similar to that of artificial ones. Seed setting in hy-
brids takes place more often when the maternal form 
is Aegilops and the paternal form is wheat [46,45,3]. 
Most easily cross-bred with wheat are Aegilops species 
containing the D genome, which has the highest homo-
logy to the D genome of wheat [3]. 

Failures in cross-breeding of wheat with many 
Aegilops species are due to low homology or lack of 
homology between their genomes and those of whe-
at, and to an improper number of chromosomes in the 
endosperm. Underdevelopment of the endosperm le-
ads to the death of the embryos in the early stage of 
development. Embryos can be isolated and grown on 
artificial media in vitro. Sterility in F1 hybrids of di-
stant forms is due to disturbances in the meiosis pro-
cess [47], which results in a lack of functional gametes. 
Backcrossing with wheat or colchicination is necessa-
ry to obtain kernels [48].

Difficulties in obtaining F1 intergeneric hybrids 
also result from the genetic barrier posed by the group 
of Kr genes in common wheat. The system controlling 
the capacity for intergeneric cross-breeding of T. aesti-
vum with rye includes four dominant genes, Kr1, Kr2, 
Kr3 and Kr4, of which Kr1 produces the strongest ef-
fect and Kr3 the weakest. In their dominant form, these 
genes inhibit seed-setting ability in the F1 generation 
[49, 50, 51]. There are, however, varieties of wheat, 
e.g. Chinese Spring with the genotype kr1 kr1 kr2 kr2, 
which are distinguished by adequate ability to cross 
breed with rye [52]. 

To overcome barriers to cross-breeding, various 
methods and techniques are used for transferring ge-
nes from Aegilops species to wheat. These include the 
following:

– adding the entire genome of the Aegilops spe-
cies to wheat genomes, i.e. obtaining amphi-
ploids, and from these, via backcrossing with 
wheat, addition and substitution lines;

– one of the recombination methods, i.e. cros-
sover resulting from homologous or homeolo-
gous pairing of chromosomes;

– translocations induced by ionizing radiation, 
caused by gametocidal chromosomes, or re-
sulting from somaclonal variation;

– obtaining alloplasmic forms of wheat with the 
cytoplasm of Aegilops species;

– transferring single genes to wheat via genetic 
engineering methods. 

Chromosome doubling using colchicin in F1 

hybrids makes it possible to obtain amphiploids [53], 
and from these, via backcrossing with wheat, addition 
and substitution lines [54,55]. Amphiploids can also 
arise spontaneously via pairing of unreduced male and 
female gametes formed by intergeneric or interspecific 
F1 hybrids [56]. 

By backcrossing amphiploids with wheat and 
carrying out selection for 43-chromosome plants, addi-
tion lines can be produced. One Aegilops chromosome 
is added to the complete set of wheat chromosomes, 
and following pollination of plants with 43 chromoso-
mes, forms arise that have two Aegilops chromosomes. 
Although addition lines have not found wide applica-
tion in practice due to disturbances in meiotic divisions 
leading to the loss of the added chromosome and to 
low fertility, they are used to identify foreign chromo-
somes and as initial forms for transferring foreign ge-
netic material to wheat [55,57].

Addition lines are used to obtain substitution li-
nes. These are more stable than addition lines and have 
more genotypic variation. Substitution lines were obta-
ined in which Aegilops chromosomes were substituted 
in place of wheat chromosomes [6,58,59,60]. Owing 
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to the foreign chromosomes, these lines are resistant to 
fungal pathogens, nematodes, and insects. 

The simplest method for transferring foreign 
genes to wheat is recombination resulting from homo-
logous pairing of chromosomes, usually chromosome 
D of Aegilops and chromosome D of wheat [3]. The 
species Ae. squarrosa (D), Ae. ventricosa (UnD), and 
Ae. cylindrica (CD) contain D genomes that are homo-
logous to that of wheat [2]. In this case, gene transfer 
can take place on the basis of a simple crossing over. 

Recombination resulting from homeologous pa-
iring of chromosomes occurs exclusively via inactiva-
tion of the Ph genes of the homologous pairing system 
in common wheat. Suppression of homeologous pa-
iring is controlled by the group of dominant Ph genes 
– Ph1 on chromosome 5 BL and Ph2 on chromosome 
3DS, as well as other unidentified genes on chromoso-
mes 3AS, 4D, 5A, 5B, and 5D. Of these, Ph1 exhibits 
the strongest effect [61]. The gene Ph1 occurs both in 
common wheat T. aestivum and in tetraploid wheat T. 
durum, but is not present in diploid species of wheat 
or in the Aegilops species from which tetraploid whe-
ats with AABB and AAGG genomes were produced. 
This gene must have appeared at the tetraploid level in 
the development of hexaploid wheat. The absence of 
the Ph1 gene in the goatgrass Ae. speltoides indicates 
that it emerged as the recessive mutation ph, enabling 
pairing of chromosomes of diploid wheat (AA) with 
chromosomes of Ae. speltoides (SS), or as a transloca-
tion of a segment of an extra chromosome of the goat-
grass Ae. mutica with a wheat chromosome [62]. 

In the absence of dominant Ph genes (nullisomy 
2n = 40: ph ph, monosomy 2n = 41: Ph ph) or in the 
case of a recessive mutation (disomy 2n = 42: ph ph), 
there occurs homeologous pairing of chromosomes of 
foreign species with wheat chromosomes in F1 hybrids. 
The effect of the recessive ph allele is manifested only 
in interspecific and intergeneric hybrids; it does not 
affect the pairing of chromosomes of the A, B and D 
genomes in common wheat [63]. During homeologo-
us pairing reciprocal translocations take place, which 
constitute the main mechanism by which a chromo-
some fragment from a foreign species is incorporated 
in the wheat genome, and the transfer of foreign ge-
nes sought in T. aestivum breeding occurs. Thus, the 
system of recessive ph genes enabling homeologous 
pairing is exploited in the introgression of foreign ge-
nes into common wheat. For this reason work has been 
undertaken to obtain recessive ph ph genotypes in T. 
aestivum wheat [52]. S e a r s  [64] obtained the worl-
d’s first complete sets of 21 monosomic lines (2n = 
41) and 21 nullisomic lines (2n = 40) in the Chinese 
Spring variety. This allowed the heterozygous geno-
types Ph1ph1 (mono-5B) and Ph2ph2 (mono-3D) and 
the homozygous genotypes ph1ph1 (nulli-5B) and ph2 

ph2 (nulli-3D) to be used in breeding. Subsequent mo-
nosomic series of wheat were obtained in the cultivars 
‘Drabant’, ‘Jara’, ‘Favorit’ and others [52]. 

Using induced homeologous pairing and cros-
sing over, a number of wheat varieties with Aegilops 
genes have been obtained. One of the first was Compair 
[65], with resistance to yellow rust transferred from Ae. 
comosa. Resistance to rust was determined by the domi-
nant gene transferred to chromosome 2D of wheat toge-
ther with a fragment of chromosome 2M of Ae. comosa. 

On chromosome 5S of the goatgrass Ae. Spel-
toides, Dvorak et al. [61] identified dominant PhI sup-
pressor genes which cause inactivation of the gene Ph1 
on chromosome 5BL of common wheat. In the presen-
ce of these genes, and despite the presence of the Ph1 
gene, synapsis takes place between homeologous chro-
mosomes of foreign species and of T. aestivum. Simi-
lar genes were located in Ae. peregrina and Ae. kot-
schyi [66]. Suppressor genes were successfully used to 
transfer genes of resistance to brown and yellow rust 
from Ae. umbellulata [14] and from Ae. triuncialis and 
Ae. geniculata [67] to common wheat. 

S e a r s  [68] distinguished goatgrass species 
whose S genomes were highly homeologous to whe-
at B genomes: Ae. searsii (SS), Ae. longissima (S1),
Ae. sharonensis (S1), Ae. bicornis (Sb), Ae. speltoides 
(S), Ae. variabilis (US) and Ae. kotschyi (US). The au-
thor states that a low degree of homeology to wheat 
genomes is exhibited by the genomes of such species 
as Ae. umbellulata (U), Ae. mutica (Mu), Ae. caudata 
(C), Ae. comosa (M) and Ae. uniaristata (Un).

If a foreign chromosome is not homeologous to 
wheat chromosomes and cannot pair with them in F1 hy-
brids, genetic material from Aegilops can be introduced 
into wheat by means of translocations. It is then neces-
sary to apply radiation methods in order to physically 
activate the chromosome [69]. These methods involve 
irradiation of the anthers or kernels of F1 hybrids and 
self-pollination. In both cases, in the F2 generation trans-
locations with a foreign chromosome must be identified 
[70, 52]. S e a r s  [71] was the first to use ionizing radia-
tion to induce chromosomal aberrations and to transfer 
the gene for resistance to brown rust (Puccinia recondi-
ta) from Ae. umbellulata to the Chinese Spring variety 
of wheat. 

Gametocidal chromosomes can contribute to the 
transfer of foreign genes to wheat. It has been observed 
that certain foreign chromosomes added to wheat are 
not eliminated from its genome despite successive back-
crossings. Gametes with such chromosomes were found 
to be fertile, while other gametes were incapable of ferti-
lization. The presence of a gene or genes conferring the 
‘gametocidal’ trait was observed on chromosome 3C of 
Ae. markgrafii and Ae. triuncialis [72], on chromoso-
me 2C of Ae. cylindrica [73], on chromosome 4M of
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Ae. geniculata [74], on chromosomes 2Sl and 4Sl of Ae. 
longissima, on 2Ssh and 4Ssh of Ae. sharonensis [75], and 
on chromosomes 2S and 6S of Ae. speltoides [76]. Ga-
metocidal chromosomes introduced into wheat induced 
mutations involving structural changes in chromosomes 
such as deletions and translocations [77].

In vitro breeding conditions can also contribute 
to translocations between Aegilops and Triticum chro-
mosomes. F e l d m a n  [78] observed the presence of 
multivalents in meiosis, probably caused by transloca-
tions in hybrids of T. aestivum with the amphiploid T. 
turgidum-Ae. squarrosa, regenerated from callus obta-
ined from an in vitro microspore culture. 

Aegilops species can be used as donors of cyto-
plasmic genes. As a result of the transfer of the com-
mon wheat nucleus to the cytoplasm of Ae. caudata 
and Ae. ovata, in later generations of backcrossing hy-
brids there appeared male-sterile forms of wheat that 
could constitute starting material in heterosis breeding 
[79]. Cytoplasm substitution can cause changes in 
grain yield, protein content and resistance to various 
biological and ecological stresses, due to diverse inte-
ractions between the nucleus and the cytoplasm [80]. 
By cross-breeding the species Ae. caudata, Ae. co-
lumnaris, Ae. kotschyi, Ae. markgrafii, Ae. peregrina, 
Ae. umbellulata and Ae. triuncialis with alloplasmic 
wheat with a translocated 1BL/1RS chromosome, 
wheat haploids can be induced as the result of parthe-
nogenesis [81]. From these haploids it is possible to 
obtain double haploids, by colchicination or the use 
of other mutagens that double genetic material, thus 
substantially shortening the process of producing new 
varieties. 

Recent years have seen the rapid development 
of genetic engineering techniques. Transgenic varie-
ties of wheat have been obtained which are resistant to 
the herbicide glyphosate [82]. One subject of current 
research is the risk of transfer of such transgenes from 
wheat to Aegilops species, which are often present as 
weeds in wheat crops [45]. Genetic markers can be 
used to evaluate the scale of this phenomenon. Areas 
in which DNA markers have found wide application 
include evaluation of genetic similarity or distance, 
selection and identification of desired forms, con-
firmation of the effectiveness of cross-breeding, and 
identification of Aegilops genes determining important 
performance features [36, 83, 84, 57, 85, 86, 87, 17, 
88]. Using molecular techniques, Aegilops genes can 
be isolated and stored in artificial bacterial chromoso-
mes and then transferred to wheat [89, 90].

CONCLUSION

Transfer of Aegilops genes makes it possible 
to enrich wheat with valuable resistance and quality 

characteristics and to prevent genetic erosion of the 
species. The modifications and breeding lines obtained 
constitute starting material for new varieties which are 
more fertile, more resistant, and better suited to chan-
ging climate and soil conditions.
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Udział gatunków Aegilops
w powstaniu i doskonaleniu

pszenicy zwyczajnej 

S t r e s z c z e n i e

Niektóre gatunki Aegilops brały udział w ewo-
lucji pszenicy zwyczajnej, odgrywając ważną rolę
w jej udomowieniu, dlatego rodzaj Aegilops stanowi 
dużą część dodatkowej puli genów warunkujących 
ważne cechy użytkowe dla pszenicy. Hodowcy od lat 
wykorzystują te geny do tworzenia nowych dosko-

nalszych odmian pszenicy. Krzyżowania oddalone 
napotykają na szereg barier niekrzyżowalności, które 
należy pokonać, aby uzyskać mieszańce, a następnie 
wyselekcjonować z nich linie charakteryzujące się 
pożądanymi cechami dzikich krewniaków pszenicy.
W artykule przedstawiono doniesienia na temat ewolu-
cji pszenicy zwyczajnej oraz główne metody i techniki 
umożliwiające transfer materiału genetycznego gatun-
ków Aegilops do pszenicy, w tym dodawanie całych 
genomów, pojedynczych chromosomów, fragmentów 
chromosomów, pojedynczych genów oraz substytucję 
cytoplazmy w pszenicy. 
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