PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 34 | 3 |

Tytuł artykułu

Antagonistic effects of binary mixture of titanium dioxide nanoparticles and lead on biomass and oxidative stress in exposed Chloroidium ellipsoideum (Gerneck)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Sub-lethal bioassay was performed on Chloroidium ellipsoideum to monitor the changesin the algal biomass and antioxidant activities associated with Titanium dioxide Nanoparticles (TiO2 NPs) and Lead Pb(II). The results showed that there was significant (p < 0.05) decrease in biomass (density, chlorophyll a and b) of Chloroidium ellipsoideum as a result of adsorption of Pb(II) by TiO2-NPs. However, the binary mixtures of the chemicals significantly increased antioxidant activities (SOD and MDA) of the alga. Furthermore, the study revealed an antagonistic (CI >1) effect of the binary chemicals on the biomass and antioxidant activities of the alga. Based on the study, it was shown that the co-exposure of TiO2 NPs and Pb(II) decreased the Pb(II) bioavailability causing antagonistic effects on biomass and antioxidant activities in Chloroidium ellipsoideum

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

3

Opis fizyczny

p.367-382,fig.,ref.

Twórcy

autor
  • Department of Biological Sciences, Baze University, Airport Road, Abuja, Nigeria
  • Department of Zoology, University of Ilorin, Ilorin, Nigeria

Bibliografia

  • ARUOJA V., DUBOURGUIER H., KAHRU A. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2to microalgaePseudokirchneriella subcapitata. Sci. Total. Environ., 407(1): 1461–1468, doi: 10.1016/j.scitotenv.2008.10.053.
  • BAJGUZ A. 2011. Suppression ofChlorella vulgarisgrowth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Arch. Environ. Contam. Toxicol., 60(3): 406–416.
  • BEAUCHAMP C., FRIDOVISH I. 1971. Superoxidase dismutase improved assay and an assay appli-cable to acrylamide gels. Anal. Biochem., 44: 276–287
  • CARDINALE B.J., BIER R., KWAN C. 2012. Effects of TiO2 nanoparticles on the growth and meta-bolism of three species of freshwater algae. J. Nanopart. Res., 15(1): 913–921, doi. 10.1007/s11051-012-0913-6.
  • CHEN X. 2015. Modeling of experimental adsorption isotherm data. Information, 6: 14–22.
  • CHEN X., MAO S.S. 2007. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev., 107(1): 2891–2959, doi: 10.1021/cr0500535.
  • CHOU-TALALAY C. 1976. Derivation and properties of Michaelis-Menten type and Hill type equations for reference ligands. J. Theo. Biol., 5(1): 253–276.
  • DĄBROWSKI A. 2001. Adsoption from theory to practice. Adv. Colloid. Int. Sci., 93(1):135–224.
  • ENSIBI C., MOHAMEDN.D. 2017. Toxicity assessment of cadmium chloride on plantonic copepods Centropages ponticus using biochemical markers. Toxicol. Rep., 4(1): 83–88.
  • FAN W., LI X., ZHOU S. 2016. Effect of nano-Al2O3 on the toxicity and oxidative stress of cop-per towards Scenedesmus obliquus. Int. J. Environ. Res. Public. Health., 13(1): 575–585, doi:10.3390/ijerph13060575.
  • GRATZELM.J. 2004. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Photochem. Photobiol., 164(1): 3–14.
  • GROSELL M., GERDES R., BRIX K. 2006. Chronic toxicity of lead to three freshwater invertebrates:Brachionus calyciflorus, chironomus tentans and Lymnea stagnalis. Environ. Toxicol. Chem., 25(1): 97–104.
  • HALTTUNEN T., SALMINEN S., TAHVONEN R. 2007. Rapid removal of lead and cadmium from wa-ter by specific lactic acid bacteria. Int. J. Food Microbiol., 114: 30–35, doi: 10.1016/j.ijfoodmi-cro.2006.10.040 .
  • HARTMANNN.B., KAMMER F., HOFMANN T., BAALOUSHA M., OTTOFUELLING S., BAUN A. 2009. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modi-fication of cadmium bioavailability. Toxicol., 269(1): 190–197, doi: 10.1016/j.tox.2009.08.008.
  • HEATHR.L., PACKER L. 1968. Photoperoxidation in isolated chloroplast. Kinetics and stoichiom-etry of fatty acid peroxidation. Arch. Biochem. Biophy., 125(1): 189–198, doi: 10.1016/0003-9861(68)90654-1.
  • HUREL C., MARMIER N., CLÉMENT L. 2013. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants Effects of size and crystalline structure. Chemosphere., XXX: 1083–1090, doi: 10.1016/j.chemosphere.2012.09.013.
  • JAISHANKAR M., TENZIN T., NARESH A., BLESSY B., KRISHNAMURTHY N. 2014. Toxicity, mecha-nism and health effects of some heavy metals. Interdicip. Toxicol., 7(1): 60–72, doi: 10.2478/intox-2014-0009.
  • JI J., LONG Z., LIN L. 2010. Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem. Eng. J., 170(1): 525–530.
  • KIRCHOFF H. 2014. Structural changes of the thylakoid membrane network induced by high stress in plant chloroplasts. Phil. Trans. R. Soc. Lon. Biol. Sci., 369(1): 201–225.
  • MAO A.J., YANG W.W., YANG L.W. 2012. Cd2+ Toxicity to a green alga Chlamydomonas reinhard-tiias influenced by its adsorption on TiO2 engineered nanoparticles. PLoS. One. 7, e32300, doi:10.1371/journal.pone.0032300.
  • MARTINEZ C.B., NAGAE M., ZIA C.T, ZAI A.D.A. 2004. Acute morphological and Physiological effects of lead in the Neotropical fish Prochilodus lineatus. Braz. J. Biol., 64(1): 779–807, doi: S1519-69842004000500009.
  • MATOUKE M.M., ELEWA D., ABDULAHI K.2018. Binary effect of TiO2 NPs and phosphorus on mi-croalgae Chlorellaellipsoidea Gerneck, 1907. Aqua. Toxicol., 198(1): 1233–1332.
  • MUKHERJEE A., SADIQ M., DALAI S., CHANDRASEKARAN N. 2011. Ecotoxicity study of titania (TiO2) NPs on two microalgae species:Scenedesmus sp. andChlorellasp. Ecotoxicol. Environ. Saf., 74(1): 1180–1187, doi: 10.1016/j.ecoenv.2011.03.006.
  • MUTEMBEI J.K., SALIM A.M., ONDITI O.A., WAUDO W., YUSUF A.O. 2014. Determination of heavy metals and nutrients in rivers Naka and Irigu, Chuka, (Kenya) using atomic absorption spectrometry and UV/visible spectrophotometry. J. Appl. Chem., 7(1): 2278–5736.
  • NEELAM A., RAI L.C. 2003. Differential responses of three cyanobacteria to UV-B and Cd. J. Micro-biol. Biotechnol., 43(1): 544–551.
  • RAY S., SHOMA J., SUMOD U.S., ASBITHA S. 2012. Nanotechnology in cosmetics: opportunities and challenges. J. Pharm. Bioallied. Sci., 4: 186–193, doi: 10.4103/0975-7406.99016.
  • RITCHIE R.J. 2008. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, metha-nol, or ethanol solvents. Photos., 46(1): 115–126, doi:10.1007/s11099-008-0019-7.
  • SCHAEDLE M., BASSH AM J.A. 1977. Chloroplast glutathione reductase. Plant. Physiol., 59: 1011–1012.
  • SEVAKOVA M., MODRA H., SLANIVA A., SVOBODOVA Z. 2011. Metal as a cause of oxidative stress in fish: A review. Vet. Med., 56(1): 537–546.
  • SHOAF W.T., LIUM B.W. 1976. Improved extraction of chlorophyll a and b from algae using dime-thyl sulfoxide. Limnol. Oceanogr., 21(1): 926–928.
  • SILVERBERG B.A., WONG P.T., CHAU Y.K. 1977. Effect of tetramethyl lead on freshwater green algae. Arch. Environ. Contam. Toxicol., 5: 305–313.
  • STOIBER T.L., MARTIN M.Y., SHAFER Y.Z., ARMSTRONGY D.E. 2010. Differential effects of copper and cadmium exposure on toxicityendpoints and gene expression inChlamydomonas reinhard-tii. Environ. Toxicol. Chem., 29: 191–200, doi: 10.1002/etc.6.
  • TANG Y., LI S., QIAO J., WANG H., LI L. 2013. Synergistic effects of nano-sized titanium dioxi-de and zinc on the photosynthetic capacity and survival ofAnabaena sp. Int. J. Mol. Sci., 14: 14395-14407, doi:10.3390/ijms140714395.
  • TRIPATHI B.N., METHA S.K., AMAR A., GAUR J.P. 2006. Oxidative stress in Scenedesmus sp. during short and long-term exposure to cu2+ and Zn2+. Chemosphere, 62: 538–544.
  • WANG G., CHEN L., ZHOU L., LIU Y., DENG S., WUB H. 2012. Toxicological effects of nanome-ter titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicol. Environ. Saf., 8: 155–162.
  • WHO 2013. World standards for allowable levels of lead in water/leadfreewater.com/world-stan-dards.
  • XIONG B., ZHANG W., CHEN L., LINK.F., GUOM. J., WANG W.L., CUI Z.H., BIH.S., WANG B. 2013. Effects of Pb(II) Exposure on Chlorella protothecoides and Chlorella vulgaris. Growth, malon-dialdehyde, and photosynthesis-related gene transcription. Environ. Toxicol., 29: 1346–1354, doi: 10.1021/es202110d.
  • ZHANG R., NIU Y., ZHAO, C., SONG B., LI Y., ZHOU Y. 2010. Acute toxicity of the interaction between titanium dioxide nanoparticles and lead acetate in mice. Env. Toxicol. Pharmacol., 30(1): 52–60.
  • ZHANG Y., LEU Y.R., AITKEN R., RIEDIKER M. 2015. Inventory of engineered nanoparticle conta-ining consumer products available in the Singapore retail market and likelihood of release into the aquatic environment. Int. J. Environ. Res. Public. Health., 12: 8717–8743, doi: 10.3390/ijerph120808717.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-87fb8ff2-c17b-4622-a06e-2eee40fef9da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.