PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 75 |

Tytuł artykułu

Growth of Populus tremula on CO2-enriched soil at a natural mofette site

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The main objective of the study was to evaluate inter-annual ring-width variation and cumulative growth of aspen (Populus tremula L.) trees growing on the spots of different soil CO2 concentration at natural mofette site. We hypothesized that growth rate of trees is affected by CO2 concentration within their rooting zone. The study site was situated in the flood plain of Plesná stream near Hartoušov (Western Bohemia). Trees growing in a pure aspen stand were selected according to the CO2-gas regime within their rooting zone. Five high [CO2] trees (10–25% CO2 in the soil) and five low [CO2] trees (up to 3% CO2 in the soil) were sampled. Stem growth analysis of each trunk was carried out to study growth pattern in detail. High and low [CO2] trees significantly differed in a growth rate. At the age of 25 years, the basal area of high [CO2] trees exceeded low [CO2] trees by 39 %. The positive effect of CO2 on annual increment was pronounced particularly in the years with optimal growing conditions. Results suggest that trees can be fertilized not only by elevated atmospheric CO2 but also when fed with CO2 via the roots.

Wydawca

-

Czasopismo

Rocznik

Tom

75

Opis fizyczny

p.3-12,fig.,ref.

Twórcy

  • Forestry and Game Management Research Institute, Strnady 136, 252 02 Jiloviste, Czech Republic
autor
  • Chair of Applied Botany and Volcano Biology, University of Duisburg-Essen, D-45117 Essen, Germany
autor
  • Forestry and Game Management Research Institute, Strnady 136, 252 02 Jiloviste, Czech Republic
autor
  • Forestry and Game Management Research Institute, Strnady 136, 252 02 Jiloviste, Czech Republic
autor
  • Chair of Applied Botany and Volcano Biology, University of Duisburg-Essen, D-45117 Essen, Germany

Bibliografia

  • Ainsworth EA & Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351–372.
  • Asshoff R & Hättenschwiler S (2006) Changes in needle quality and larch bud moth performance in response to CO2 enrichment and defoliation of treeline larches. Ecological Entomology 31: 84–90.
  • Bankwitz P, Schneider G, Kämpf H & Bankwitz E (2003) Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). Journal of Geodynamics 35: 5–32.
  • Bloemen J, McGuire MA, Aubrey DP, Teskey RO & Steppe K (2013) Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees. New Phytologist 197: 555–565.
  • Bräuer K, Kämpf H, Niedermann S, Strauch G & Weise SM (2004) Evidence for a nitrogen flux directly derived from the European subcontinental mantle in the Western Eger Rift, central Europe. Geochimica et Cosmochimica Acta 68: 4935–4947.
  • Bruhn D, Leverenz JW & Saxe H (2000) Effects of tree size and temperature on relative growth rate and its components of Fagus sylvatica seedlings exposed to two partial pressures of atmospheric [CO2]. New Phytologist 146: 415–425.
  • Ceulemans R & Mousseau M (1994) Tansley Review No. 71 Effects of elevated atmospheric CO2 on woody plants. New Phytologist 127: 425–446.
  • Cook ER & Holmes RL (1996) Users Manual for Program ARSTAN. Laboratory of Tree-Ring Research. University of Arizona, Tucson, USA.
  • Crookshanks M, Taylor G & Broadmeadow M (1998) Elevated CO2 and tree root growth: contrasting responses in Fraxinus excelsior, Quercus petraea and Pinus sylvestris. New Phytologist 138: 241–250.
  • Čížek V (2007) Jaké u nás můžeme pěstovat topoly? [What poplars can be cultivated in the Czech Republic]. Lesnická práce 86: 27–29.
  • Dawes MA, Hättenschwiler S, Bebi P, Hagedorn F, Handa IT, Körner C & Rixen C (2011) Species-specific tree growth responses to 9 years of CO2 enrichment at the alpine treeline. Journal of Ecology 99: 383–394.
  • Druart N, Rodriguez-Buey M, Barron-Gafford G, Sjodin A, Bhalerao R & Hurry V (2006) Molecular targets of elevated [CO2] in leaves and stems of Populus deltoides: implications for future tree growth and carbon sequestration. Functional Plant Biology 33: 121–131.
  • Eguchi N, Funada R, Ueda T, Takagi K, Hiura T, Sasa K & Koike T (2005) Soil moisture condition and growth of deciduous tree seedlings native to northern Japan grown under elevated CO2 with a FACE system. Phyton-Annales Rei Botanicae 45: 133–138.
  • Handa IT, Körner Ch & Hättenschwiler S (2006) Conifer stem growth at the altitudinal treeline in response to four years of CO2 enrichment. Global Change Biology 12: 2417–2430.
  • Hättenschwiler S, Schweingruber FH & Körner Ch (1996) Tree-ring responses to elevated CO2 and increased N-deposition in Picea abies. Plant, Cell and Environment 19: 1369–1378.
  • Hättenschwiler S, Miglietta F, Raschi A & Körner Ch (1997) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Global Change Biology 3: 463–471.
  • Hättenschwiler S & Körner Ch (1998) Biomass allocation and canopy development in spruce model ecosystems under elevated CO2 and increased N deposition. Oecologia 113: 104–114.
  • Holmes RL (1983) Computer-assisted quality control in tree–ring dating and measurement. Tree-Ring Bulletin 43: 69–78.
  • Koch U, Bräuer K, Heinicke J & Kämpf H (2008) The gas flow at mineral springs and mofettes in the Vogtland/NW Bohemia: an enduring long-term increase. Geofluids 8: 274–285.
  • Korf V (1939) Příspěvek k matematické definici vzrůstového zákona lesních porostů [Contribution to the mathematical definition of growth principle of forest stands] (in Czech). Lesnická práce: 339–356.
  • Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW & Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309: 1360–1362.
  • Kozák J (2010) Soil Atlas of the Czech Republic. Prague, Czech University of Life Sciences Prague.
  • Levy PE, Meir P, Allen SJ & Jarvis PG (1999) The effect of aqueous transport of CO2 in xylem sap on gas exchange in woody plants. Tree Physiology 19: 53–58.
  • Maček I, Pfanz H, Francetič V, Batič F & Vodnik D (2005) Root respiration response to elevated CO2 – the effect of extremely high CO2 concentrations at natural CO2 springs. Environmental and Experimental Botany 54: 90–99.
  • Marzaioli F, Lubritto C, Battipaglia G, Passariello I, Rubino M, Rogalla D, Strumia S, Miglietta F, D‘Onofrio A, Cotrufo MF & Terrasi F (2005) Reconstruction of past CO2 concentration at a natural CO2 vent site using radiocarbon dating of tree rings. Radiocarbon 47: 257–263.
  • McDonald EP, Kruger EL, Riemenschneider DE & Isebrands JG (2002) Competitive status influences tree-growth responses to elevated CO2 and O3 in aggrading aspen stands. Functional Ecology 16: 792–801.
  • Mitscherlich EA (1909) Das Gesetz des Minimums und das Gesetz des abnehmenden Bodenertrages. Landwirtschaftliche Jahrbücher 38: 537–552.
  • Norby RJ, Todd DE, Fults J & Johnson DW (2001) Allometric determination of tree growth in a CO2-enriched sweetgum stand. New Phytologist 150: 477–487.
  • Paoletti E, Pfanz H & Raschi A (2005) Pros and cons of natural CO2 springs as experimental sites: Plant Responses to Air Pollution and Global Change (ed. by K Omasa, I Nouchi & LJ De Kok). Springer-Verlag, Tokyo, pp. 195–202.
  • Pepin S & Körner Ch (2002) Web-FACE: a new canopy free-air CO2 enrichment system for tall trees in mature forests. Oecologia 133: 1–9.
  • Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C & Loose M (2002) Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89: 147–162.
  • Pfanz H, Wittmann C, Vodnik D, Aschan G, Batič F, Turk B & Maček I (2007) Photosynthetic performance (CO2-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleum pratense L.) is affected by elevated carbon dioxide in post-volcanic mofette areas. Environmental and Experimental Botany 61: 41–48.
  • Pfanz H (2008) Bark photosynthesis. Trees 22: 137–138.
  • Raschi A, Miglietta F, Tognetti R & van Gardingen PR (1997) Plant responses to elevated CO2 – evidence from natural springs. Cambridge Univ Press.
  • Rasmussen L, Beier C & Bergstedt A (2002) Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO2 and temperature in a future climate. Forest Ecology and Management 158: 179–188.
  • Rennert T, Eusterhues K, Pfanz H & Totsche KU (2011) Influence of geogenic CO2 on mineral and organic soil constituents on a mofette site in the NW Czech Republic. European Journal of Soil Science 62: 572–580.
  • Saurer M, Cherubini P, Bonani G & Siegwolf R (2003) Tracing carbon uptake from a natural CO2 spring into tree rings: an isotope approach. Tree Physiology 23: 997–1004.
  • Schweingruber FH, Eckstein D, Serre-Bachet F & Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8: 9–38.
  • Spiecker H (1999) Growth trends in European forests – do we have sufficient knowledge?: Causes and consequences of accelerating tree growth in Europe (ed. by T Karjalainen, H Spiecker & O Laroussinie) EFI Proceedings No. 27.
  • Teskey RO & McGuire MA (2002) Carbon dioxide transport in xylem causes errors in estimation of rates of respiration in stems and branches of trees. Plant, Cell and Environment 25: 1571–1577.
  • Teskey RO, Saveyn A, Steppe K & McGuire MA (2008) Origin, fate and significance of CO2 in tree stems. New Phytologist 177: 17–32.
  • Tjoelker MG, Oleksyn J & Reich PB (1998) Temperature and ontogeny mediate growth response to elevated CO2 in seedlings of five boreal tree species. New Phytologist 140: 197–210.
  • Tognetti R, Cherubini P & Innes JL (2000) Comparative stem-growth rates of Mediterranean trees under backround and naturally enhanced ambient CO2 concentrations. New Phytologist 146: 59–74.
  • Vodnik D, Sirčelj H, Kastelec H, Maček I, Pfanz H & Batič F (2005) The effects of natural CO2 enrichment on the growth of maize. Journal of Crop Improvement 13: 193–212.
  • Vodnik D, Kastelec D, Pfanz H, Maček I & Turk B (2006) Small-scale spatial variation in soil CO2 concentration in a natural carbon dioxide spring and related properties at the plant level. Geoderma 133: 309–319.
  • Warren WG (1980) On removing the growth trend from dendrochronological data. Tree-Ring Bulletin 40: 35–44.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8781d457-d8b4-410a-ae32-64ed3921e7ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.