Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 59 | 3 |
Tytuł artykułu

Identifying phenotypes involved in susceptibility to Schistosoma mansoni infection in F1B6CBA mice

Treść / Zawartość
Warianty tytułu
Języki publikacji
Schistosomiasis is a disease with a strong genetic component influenced by socioeconomic and ecological factors. Epidemiological studies have identified several genetic regions involved in the schistosomiasis susceptibility. However, it is not well known what physiological traits are predisposing to the disease. The study of experimental infections in inbred mouse strains with variable genetic susceptibility to the disease offers a good opportunity to tackle this question. F1B6CBA hybrid between the most divergent strains was infected in order to characterize the immunophenotypes that correlate with the susceptibility of schistosomiasis disease in mice. Complete blood counts and immunophenotype were determined at 0, 3, 6, and 9 weeks post infection. Nine weeks after cercariae exposure, animals were perfused and worm recovery was assessed. A large number of hepatic lesions, a reduction in the eosinophil and basophil count in the acute phase of infection and the decreased number of monocytes, neutrophils and B-lymphocytes are phenotypes associated with increased susceptibility to S. mansoni infection.
Opis fizyczny
  • Laboratorio de Inmunologia y Parasitologia Molecular, CIETUS-IBSAL, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
  • Laboratorio de Inmunologia y Parasitologia Molecular, CIETUS-IBSAL, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
  • Centro de Investigacion del Cancer, Universidad de Salamanca-CSIC, Salamanca, Spain
  • Centro de Investigacion del Cancer, Universidad de Salamanca-CSIC, Salamanca, Spain
  • Centro de Investigacion del Cancer, Universidad de Salamanca-CSIC, Salamanca, Spain
  • Laboratorio de Inmunologia y Parasitologia Molecular, CIETUS-IBSAL, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
  • Anthony R.M., Rutitzky L.I., Urban J.F., Jr., Stadecker M.J., Gause W.C. 2007. Protective immune mechanisms in helminth infection. Nature Reviews Immunology, 7, 975–987. DOI: 10.1038/nri2199.
  • Bethony J.M., Quinnell R.J. 2008. Genetic epidemiology of human schistosomiasis in Brazil. Acta Tropica, 108, 166–174. DOI: 10.1016/j.actatropica.2007.11.008.
  • Bevan M.J. 1995. Antigen presentation to cytotoxic T lymphocytes in vivo. Journal Experimental Medicine, 182, 639–641.
  • Bosshardt S.C., Freeman G.L., Jr., Secor W.E., Colley D.G. 1997. IL-10 deficit correlates with chronic, hypersplenomegaly syndrome in male CBA/J mice infected with Schistosoma mansoni. Parasite Immunology, 19, 347–353.
  • Burke M.L., Jones M.K., Gobert G.N., Li Y.S., Ellis M.K., McManus D.P. 2009. Immunopathogenesis of human schistosomiasis. Parasite Immunology, 31, 163–176. DOI: 10.1111/j.1365-3024.2009.01098.x.
  • Campino S., Kwiatkowski D., Dessein A. 2006. Mendelian and complex genetics of susceptibility and resistance to parasitic infections. Seminars in immunology, 18, 411–422. DOI: 10.1016/j.smim.2006.07.011.
  • Cooke G.S., Hill A.V. 2001. Genetics of susceptibility to human infectious disease. Nat Reviews Genetic, 2, 967–977.
  • Cheever A.W. 1986. The intensity of experimental schistosome infections modulates hepatic pathology. American Journal of Tropical Medicine Hygiene, 35, 124–133.
  • Cheever A.W., Dunn M.A., Dean D.A., Duvall R.H. 1983. Differences in hepatic fibrosis in ICR, C3H, and C57BL/6 mice infected with Schistosoma mansoni. American Journal of Tropical Medicine Hygiene, 32, 1364–1369.
  • Cheever A.W., Duvall R.H., Hallack T.A., Jr., Minker R.G., Malley J.D., Malley K.G. 1987. Variation of hepatic fibrosis and granuloma size among mouse strains infected with Schistosoma mansoni. American Journal of Tropical Medicine Hygiene, 37, 85–97.
  • Cheever A.W., Lenzi J.A., Lenzi H.L., Andrade Z.A. 2002. Experimental models of Schistosoma mansoni infection. Memorias do Instituto Oswaldo Cruz, 97, 917–940.
  • Davies S.J., Grogan J.L., Blank R.B., Lim K.C., Locksley R.M., McKerrow J.H. 2001. Modulation of blood fluke development in the liver by hepatic CD4+ lymphocytes. Science, 294, 1358–1361.
  • Fanning M.M., Peters P.A., Davis R.S., Kazura J.W., Mahmoud A.A. 1981. Immunopathology of murine infection with Schistosoma mansoni: relationship of genetic background to hepatosplenic disease and modulation. Journal of Infectious Disease, 144, 148–153.
  • Friedman J.F., Kanzaria H.K., McGarvey S.T. 2005. Human schistosomiasis and anemia: the relationship and potential mechanisms. Trends in Parasitology, 21, 386–392. DOI: 10.1016/
  • Gause W.C., Urban J.F., Jr., Stadecker M.J. 2003. The immune response to parasitic helminths: insights from murine models. Trends in Immunology, 24, 269–277. DOI: S1471490603001017 [pii].
  • Gessner A., Mohrs K., Mohrs M. 2005. Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. The Journal of Immunology, 174, 1063–1072. DOI:174/2/1063 [pii].
  • Gryseels B., Polman K., Clerinx J., Kestens L. 2006. Human schistosomiasis. Lancet, 368, 1106–1118. DOI: 10.1016/S0140-6736(06)69440-3.
  • Ji F., Liu Z., Cao J., Li N., Zuo J., Chen Y., Wang X., Sun J.. 2008. B cell response is required for granuloma formation in the early infection of Schistosoma japonicum. PLoS One, 3, e1724. DOI: 10.1371/journal.pone.0001724.
  • Kovacsovics-Bankowski M., Rock K.L. 1995. A phagosome-tocytosol pathway for exogenous antigens presented on MHC class I molecules. Science, 267, 243–246.
  • Lawrence R.A., Allen J.E., Osborne J., Maizels R.M. 1994. Adult and microfilarial stages of the filarial parasite Brugia malayi stimulate contrasting cytokine and Ig isotype responses in BALB/c mice. The Journal of Immunology, 153, 1216–1224.
  • Mohrs K., Wakil A.E., Killeen N., Locksley R.M., Mohrs M. 2005. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity, 23, 419–429. DOI: 10.1016/j.immuni.2005.09.006.
  • Pardo J., Carranza C., Turrientes M.C., Perez Arellano J.L., Lopez Velez R., Ramajo V., Muro A. 2004. Utility of Schistosoma bovis adult worm antigens for diagnosis of human schistosomiasis by enzyme-linked immunosorbent assay and electroimmunotransfer blot techniques. Clinical and Diagnostic Laboratoy Immunology, 11, 1165–1170. DOI: 10.1128/CDLI.11.6.1165-1170.2004.
  • Pearce E.J., MacDonald A.S. 2002. The immunobiology of schistosomiasis. Nature Reviews Immunology, 2, 499–511.
  • Pedras-Vasconcelos J.A., Pearce E.J. 1996. Type 1 CD8+ T cell responses during infection with the helminth Schistosoma mansoni. The Journal of Immunology, 157, 3046–3053.
  • Ross A.G., Bartley P.B., Sleigh A.C., Olds G.R., Li Y., Williams G.M., McManus D.P. 2002. Schistosomiasis. New England Journal of Medicine, 346, 1212–1220. DOI: 10.1056/NEJMra012396346/16/1212.
  • Rumbley C.A., Sugaya H., Zekavat S.A., El Refaei M., Perrin P.J., Phillips S.M. 1999. Activated eosinophils are the major source of Th2-associated cytokines in the schistosome granuloma. The Journal of Immunology, 162, 1003–1009.
  • Rutitzky L.I., Hernandez H.J., Yim Y.S., Ricklan D.E., Finger E., Mohan C., Peter I., Wakeland E.K., Stadecker M.J. 2005. Enhanced egg-induced immunopathology correlates with high IFN-gamma in murine schistosomiasis: identification of two epistatic genetic intervals. The Journal of Immunology, 174, 435–440. DOI: 174/1/435 [pii].
  • Rutitzky L.I., Mirkin G.A., Stadecker M.J. 2003. Apoptosis by neglect of CD4+ Th cells in granulomas: a novel effector mechanism involved in the control of egg-induced immunopathology in murine schistosomiasis. The Journal of Immunology, 171, 1859–1867.
  • Rutitzky L.I., Stadecker M.J. 2011. Exacerbated egg-induced immunopathology in murine Schistosoma mansoni infection is primarily mediated by IL-17 and restrained by IFN-gamma. European journal of immunology, 41, 2677–2687. DOI: 10.1002/eji.201041327.
  • Schneider C.A., Rasband W.S., Eliceiri K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9, 671–675.
  • Shariati F., Perez-Arellano J.L., Carranza C., Lopez-Aban J., Vicente B., Arefi M., Muro A. 2011. Evaluation of the role of angiogenic factors in the pathogenesis of schistosomiasis. Experimental parasitology, 128, 44–49. DOI: 10.1016/j.exppara.2011.01.016.
  • Siles-Lucas M., Uribe N., Lopez-Aban J., Vicente B., Orfao A., Nogal-Ruiz J.J., Feliciano A.S., Muro A. 2007. The Schistosoma bovis Sb14-3-3zeta recombinant protein cross-protects against Schistosoma mansoni in BALB/c mice. Vaccine, 25, 7217–7223. DOI: 10.1016/j.vaccine.2007.07.021.
  • Smith P.M., Shainheit M.G., Bazzone L.E., Rutitzky L.I., Poltorak A., Stadecker M.J. 2009. Genetic control of severe egg-induced immunopathology and IL-17 production in murine schistosomiasis. The Journal of Immunology, 183, 3317–3323. DOI: 10.4049/jimmunol.0901504.
  • Stadecker M.J., Asahi H., Finger E., Hernandez H.J., Rutitzky L.I., Sun J. 2004. The immunobiology of Th1 polarization in high-pathology schistosomiasis. Immunology Reviews, 201, 168–179. DOI: 10.1111/j.0105-2896.2004.00197.xIMR197[pii].
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.