PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

Laminopathies: what can humans learn from fruit flies

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Lamin proteins are type V intermediate filament proteins (IFs) located inside the cell nucleus. They are evolutionarily conserved and have similar domain organization and properties to cytoplasmic IFs. Lamins provide a skeletal network for chromatin, the nuclear envelope, nuclear pore complexes and the entire nucleus. They are also responsible for proper connections between the karyoskeleton and structural elements in the cytoplasm: actin and the microtubule and cytoplasmic IF networks. Lamins affect transcription and splicing either directly or indirectly. Translocation of active genes into the close proximity of nuclear lamina is thought to result in their transcriptional silencing. Mutations in genes coding for lamins and interacting proteins in humans result in various genetic disorders, called laminopathies. Human genes coding for A-type lamin (LMNA) are the most frequently mutated. The resulting phenotypes include muscle, cardiac, neuronal, lipodystrophic and metabolic pathologies, early aging phenotypes, and combined complex phenotypes. The Drosophila melanogaster genome codes for lamin B-type (lamin Dm), lamin A-type (lamin C), and for LEM-domain proteins, BAF, LINC-complex proteins and all typical nuclear proteins. The fruit fly system is simpler than the vertebrate one since in flies there is only single lamin B-type and single lamin A-type protein, as opposed to the complex system of B- and A-type lamins in Danio, Xenopus and Mus musculus. This offers a unique opportunity to study laminopathies. Applying genetic tools based on Gal4 and in vitro nuclear assembly system to the fruit fly model may successfully advance knowledge of laminopathies. Here, we review studies of the laminopathies in the fly model system.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-12,fig.,ref.

Twórcy

autor
  • Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
autor
  • Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
autor
  • Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
autor
  • Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
autor
  • Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland

Bibliografia

  • 1. Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem. 2015;84:131–64.
  • 2. Turgay Y, Eibauer M, Goldman AE, Shimi T, Khayat M, Ben-Harush K, et al. The molecular architecture of lamins in somatic cells. Nature. 2017;543:261–4.
  • 3. Turgay Y, Medalia O. The structure of Lamin filaments in somatic cells as revealed by cryo-electron tomography. Nucleus. 2017;8:475–81.
  • 4. Rzepecki R. The nuclear lamins and the nuclear envelope. Cell Mol Biol Lett. 2002;7:1019–35.
  • 5. Ruan J, Xu C, Bian C, Lam R, Wang JP, Kania J, et al. Crystal structures of the coil 2B fragment and the globular tail domain of human Lamin B1. FEBS Lett. 2012;586:314–8.
  • 6. Machowska M, Piekarowicz K, Rzepecki R. Regulation of Lamin properties and functions: does phosphorylation do it all? Open Biology. 2015;5:150094. https://doi.org/10.1098/rsob.150094.
  • 7. Bronshtein I, Kepten E, Kanter I, Berezin S, Lindner M, Redwood AB, et al. Loss of Lamin a function increases chromatin dynamics in the nuclear interior. Nat Commun. 2015;6:8044.
  • 8. Shimi T, Pfleghaar K, Kojima SI, Pack CG, Solovei I, Goldman AE, et al. The A- and B-type nuclear Lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev. 2008;22:3409–21.
  • 9. Spann TP, Goldman AE, Wang C, Huang S, Goldman RD. Alteration of nuclear Lamin organization inhibits RNA polymerase II-dependent transcription. J Cell Biol. 2002;156:603–8.
  • 10. Kumaran RI, Muralikrishna B, Parnaik VK. Lamin a/C speckles mediate spatial organization of splicing factor compartments and RNA polymerase II transcription. J Cell Biol. 2002;159:783–93.
  • 11. Stephens AD, Banigan EJ, Adam SA, Goldman RD, Marko JF. Chromatin and Lamin a determine two different mechanical response regimes of the cell nucleus. Mol Biol Cell. 2017;28:1984–96.
  • 12. Patterson K, Molofsky AB, Robinson C, Acosta S, Cater C, Fischer JA. The functions of klarsicht and nuclear Lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Mol Biol Cell. 2004; 15:600–10.
  • 13. Mattioli E, Columbaro M, Capanni C, Maraldi NM, Cenni V, Scotlandi K, et al. Prelamin A-mediated recruitment of SUN1 to the nuclear envelope directs nuclear positioning in human muscle. Cell Death Differ. 2011;18:1305–15.
  • 14. Meinke P, Mattioliz E, Haque F, Antoku S, Columbaro M, Straatman KR, et al. Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and Myonuclear organization. PLoS Genet. 2014;10:e1004605.
  • 15. Buxboim A, Swift J, Irianto J, Spinler KR, Dingal PC, Athirasala A, et al. Matrix elasticity regulates Lamin-a,C phosphorylation and turnover with feedback to actomyosin. Curr Biol. 2014;24:1909–17.
  • 16. Harada T, Swift J, Irianto J, Shin JW, Spinler KR, Athirasala A, et al. Nuclear Lamin stiffness is a barrier to 3D migration, but softness can limit survival. J Cell Biol. 2014;204:669–82.
  • 17. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, et al. Nuclear Lamin-a scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341:1240104.
  • 18. Rzepecki R. The nuclear lamins and nuclear envelope. Cell Mol Biol Letters. 2002;7:1019–35.
  • 19. Melcer S, Gruenbaum Y, Krohne G. Invertebrate lamins. Exp Cell Res. 2007;313:2157–66.
  • 20. Peter A, Stick R. Evolution of the Lamin protein family: what introns can tell. Nucleus. 2012;3:44–59.
  • 21. Stick R, Peter A. Evolutionary changes in Lamin expression in the vertebrate lineage. Nucleus. 2017;8:392–403.
  • 22. Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008;22:832–53.
  • 23. Bossie CA, Sanders MM. A cDNA from Drosophila melanogaster encodes a Lamin C-like intermediate filament protein. J Cell Sci. 1993;104(Pt 4):1263–72.
  • 24. Gruenbaum Y, Landesman Y, Drees B, Bare JW, Saumweber H, Paddy MR, et al. Drosophila nuclear Lamin precursor Dm0 is translated from either of two developmentally regulated mRNA species apparently encoded by a single gene. J Cell Biol. 1988;106:585–96.
  • 25. Capelson M, Doucet C, Hetzer MW. Nuclear pore complexes: guardians of the nuclear genome. Cold Spring Harb Symp Quant Biol. 2010;75:585–97.
  • 26. Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell. 2010;140:372–83.
  • 27. Caygill EE, Brand AH. The GAL4 System: A Versatile System for the Manipulation and Analysis of Gene Expression (vol 1478, pg 33, 2016). Drosophila: Methods and Protocols, 2nd Edition 2016; 1478:E1–E3.
  • 28. Rzepecki R, Gruenbaum Y. Invertebrate model of Lamin diseases. Nucleus 2018;9(1):227-234.
  • 29. Rzepecki R, Fisher PA. In vivo phosphorylation of Drosophila melanogaster nuclear lamins during both interphase and mitosis. Cell Mol Biol Lett. 2002;7:859–76.
  • 30. Lin L, Fisher PA. Immunoaffinity purification and functional characterization of interphase and meiotic Drosophila nuclear Lamin isoforms. J Biol Chem. 1990;265:12596–601.
  • 31. McConnell M, Whalen AM, Smith DE, Fisher PA. Heat shock-induced changes in the structural stability of proteinaceous karyoskeletal elements in vitro and morphological effects in situ. JCell Biol. 1987;105:1087–98.
  • 32. Smith DE, Fisher PA. Interconversion of Drosophila nuclear Lamin isoforms during oogenesis, early embryogenesis, and upon entry of cultured cells into mitosis. J Cell Biol. 1989;108:255–65.
  • 33. Smith DE, Gruenbaum Y, Berrios M, Fisher PA. Biosynthesis and interconversion of Drosophila nuclear Lamin isoforms during normal growth and in response to heat shock. J Cell Biol. 1987;105:771–90.
  • 34. Zaremba-Czogalla M, Gagat P, Koziol K, Dubinska-Magiera M, Sikora J, Dadlez M, et al. Identification of new in vivo phosphosites on Lamin Dm-the evidence of heterogeneity of phosphorylation sites in different Drosophila tissues. Nucleus-Austin. 2011;2:478–88.
  • 35. Zaremba-Czogalla M, Piekarowicz K, Wachowicz K, Koziol K, Dubinska-Magiera M, Rzepecki R. The different function of single phosphorylation sites of Drosophila melanogaster Lamin Dm and Lamin C. PLoS One. 2012;7:e32649.
  • 36. Fisher PA, Berrios M. Cell-free nuclear assembly and disassembly in Drosophila. Methods Cell Biol. 1998:397–416.
  • 37. Maus N, Stuurman N, Fisher PA. Disassembly of the Drosophila nuclear lamina in a homologous cell-free system. J Cell Sci. 1995;108:2027–35.
  • 38. Stuurman N, Maus N, Fisher PA. Interphase phosphorylation of the Drosophila nuclear Lamin: site-mapping using a monoclonal antibody. J Cell Sci. 1995;108(Pt 9):3137–44.
  • 39. Stuurman N, Sasse B, Fisher PA. Intermediate filament protein polymerization: molecular analysis of Drosophila nuclear Lamin head-to-tail binding. J Struct Biol. 1996;117:1–15.
  • 40. Stuurman N. Identification of a conserved phosphorylation site modulating nuclear Lamin polymerization. FEBS Lett. 1997;401:171–4.
  • 41. Zaremba-Czogalla M, Gagat P, Koziol K, Dubinska-Magiera M, Sikora J, Dadlez M, et al. Identification of new in vivo phosphosites on Lamin Dm - the evidence of heterogeneity of phosphorylation sites in different Drosophila tissues. Nucleus. 2011;2:478–88.
  • 42. Ulitzur N, Harel A, Feinstein N, Gruenbaum Y. Lamin activity is essential for nuclear envelope assembly in a Drosophila embryo cell-free extract. J Cell Biol. 1992;119:17–25.
  • 43. Ulitzur N, Harel A, Goldberg M, Feinstein N, Gruenbaum Y. Nuclear membrane vesicle targeting to chromatin in a Drosophila embryo cell-free system. Mol Biol Cell. 1997;8:1439–48.
  • 44. Furukawa K, Osouda S, Sugiyama S, Horigome T, Fisher P. Null mutants of Drosophila B-type Lamin Dm0 show aberrant tissue differentiation rather than obvious nuclear shape distortion or specific defects during cell proliferation. Mech Develop. 2005;122:S78–S.
  • 45. Guillemin K, Williams T, Krasnow MA. A nuclear Lamin is required for cytoplasmic organization and egg polarity in Drosophila. Nat Cell Biol. 2001;3:848–51.
  • 46. Lenz-Bohme B, Wismar J, Fuchs S, Reifegerste R, Buchner E, Betz H, et al. Insertional mutation of the Drosophila nuclear Lamin Dm0 gene results in defective nuclear envelopes, clustering of nuclear pore complexes, and accumulation of annulate lamellae. J Cell Biol. 1997;137:1001–16.
  • 47. Osouda S, Horigome T, Sugiyama S, MoConnell M, Fisher PA, Furukawa K. Loss of Drosophila Lamin Dm0 induces late pupal/early adult lethality and defective differentiation accompanied by a decrease in ecdysteroid hormone receptor. Mol Biol Cell. 2004;15:80a-a.
  • 48. Osouda S, Nakamura Y, de Saint Phalle B, McConnell M, Horigome T, Sugiyama S, et al. Null mutants of Drosophila B-type Lamin Dm(0) show aberrant tissue differentiation rather than obvious nuclear shape distortion or specific defects during cell proliferation. Dev Biol. 2005;284:219–32.
  • 49. Riemer D, Weber K. The organization of the gene for Drosophila Lamin C: limited homology with vertebrate Lamin genes and lack of homology versus the Drosophila Lamin Dm0 gene. Eur JCell Biol. 1994; 63:299–306.
  • 50. Goldberg M, Harel A, Brandeis M, Rechsteiner T, Richmond TJ, Weiss AM, et al. The tail domain of Lamin Dm0 binds histones H2A and H2B. Proc Natl Acad Sci U S A. 1999;96:2852–7.
  • 51. Riemer D, Stuurman N, Berrios M, Hunter C, Fisher PA, Weber K. Expression of Drosophila Lamin C is developmentally regulated: analogies with vertebrate A-type lamins. J Cell Sci. 1995;108(Pt 10):3189–98.
  • 52. Stuurman N, Delbecque JP, Callaerts P, Aebi U. Ectopic overexpression of Drosophila Lamin C is stage-specific lethal. Exp Cell Res. 1999;248:350–7.
  • 53. Dialynas G, Speese S, Budnik V, Geyer PK, Wallrath LL. The role of Drosophila Lamin C in muscle function and gene expression. Development. 2010;137:3067–77.
  • 54. Gurudatta BV, Shashidhara LS, Parnaik VK. Lamin C and chromatin organization in Drosophila. J Genet. 2010; 89:37–49.
  • 55. Schulze SR, Curio-Penny B, Li Y, Imani RA, Rydberg L, Geyer PK, et al. Molecular genetic analysis of the nested Drosophila melanogaster Lamin C gene. Genetics. 2005;171:185–96.
  • 56. Uchino R, Nonaka YK, Horigome T, Sugiyama S, Furukawa K. Loss of Drosophila A-type Lamin C initially causes tendon abnormality including disintegration of cytoskeleton and nuclear lamina in muscular defects. Dev Biol. 2013;373:216–27.
  • 57. Schilf P, Peter A, Hurek T, Stick R. Lamins of the sea lamprey (Petromyzon marinus) and the evolution of the vertebrate Lamin protein family. Eur J Cell Biol. 2014;93:308–21.
  • 58. Klapper M, Exner K, Kempf A, Gehrig C, Stuurman N, Fisher PA, et al. Assembly of A- and B-type lamins studied in vivo with the baculovirus system. J Cell Sci. 1997;110(Pt 20):2519–32.
  • 59. Grossman E, Dahan I, Stick R, Goldberg MW, Gruenbaum Y, Medalia O. Filaments assembly of ectopically expressed Caenorhabditis elegans Lamin within Xenopus oocytes. J Struct Biol. 2012;177:113–8.
  • 60. Shuoshuo W, Adriana R, Talila V. Nesprin provides elastic properties to muscle nuclei by cooperating with spectraplakin and EB1. J Cell Biol. 2015;209:(4)529–38.
  • 61. Wagner N, Weber D, Seitz S, Krohne G. The Lamin B receptor of Drosophila melanogaster. J Cell Sci. 2004;117: 2015–28.
  • 62. Ashery-Padan R, Ulitzur N, Arbel A, Goldberg M, Weiss AM, Maus N, et al. Localization and posttranslational modifications of otefin, a protein required for vesicle attachment to chromatin, during Drosophila melanogaster development. Mol Cell Biol. 1997;17:4114–23.
  • 63. Goldberg M, Lu HH, Stuurman N, Ashery-Padan R, Weiss AM, Yu J, et al. Interactions among Drosophila nuclear envelope proteins Lamin, otefin, and YA. Mol Cell Biol. 1998;18:4315–23.
  • 64. Wagner N, Schmitt J, Krohne G. Two novel LEM-domain proteins are splice products of the annotated Drosophila melanogaster gene CG9424 (Bocksbeutel). Eur J Cell Biol. 2004;82:605–16.
  • 65. Wagner N, Kagermeier B, Loserth S, Krohne G. The Drosophila melanogaster LEM-domain protein MAN1. Eur J Cell Biol. 2006;85:91–105.
  • 66. Wagner N, Krohne G. LEM-domain proteins: new insights into Lamin-interacting proteins. Int Rev Cytol. 2007;261:1–46.
  • 67. Barton LJ, Wilmington SR, Martin MJ, Skopec HM, Lovander KLE, Pinto BS, et al. Unique and shared functions of nuclear Lamina LEM domain proteins in Drosophila. Genetics. 2014;197:653–U338.
  • 68. Furukawa K. LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2-chromatin interaction. J Cell Sci. 1999;112:2485–92.
  • 69. Furukawa K, Sugiyama S, Osouda S, Goto H, Inagaki M, Horigome T, et al. Barrier-to-autointegration factor plays crucial roles in cell cycle progression and nuclear organization in Drosophila. J Cell Sci. 2003;116: 3811–23.
  • 70. Shevelyov YY, Lavrov SA, Mikhaylova LM, Nurminsky ID, Kulathinal RJ, Egorova KS, et al. The B-type Lamin is required for somatic repression of testis-specific gene clusters. Proc Natl Acad Sci U S A. 2009;106:3282–7.
  • 71. Bao XM, Girton J, Johansen J, Johansen KM. The Lamin Dm(0) allele Ari3 acts as an enhancer of position effect variegation of the w (m4) allele in Drosophila. Genetica. 2007;129:339–42.
  • 72. Chen ZJ, Wang WP, Chen YC, Wang JY, Lin WH, Tai LA, et al. Dysregulated interactions between Lamin a and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies. J Cell Sci. 2014;127:1792–804.
  • 73. Brandt A, Krohne G, Grossans J. The farnesylated nuclear proteins KUGELKERN and LAMIN B promote aging-like phenotypes in Drosophila flies. Aging Cell. 2008;7:541–51.
  • 74. Hayashi D, Tanabe K, Katsube H, Inoue YH. B-type nuclear Lamin and the nuclear pore complex Nup107-160 influences maintenance of the spindle envelope required for cytokinesis in Drosophila male meiosis. Biol Open. 2016;5:1011–21.
  • 75. Zwerger M, Jaalouk DE, Lombardi ML, Isermann P, Mauermann M, Dialynas G, et al. Myopathic Lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum Mol Genet. 2013;22: 2335–49.
  • 76. Bohnekamp J, Cryderman DE, Paululat A, Baccam GC, Wallrath LL, Magin TM. A Drosophila model of epidermolysis bullosa simplex. J Investig Dermatol. 2015;135:2031–9.
  • 77. Bohnekamp J, Cryderman DE, Thiemann DA, Magin TM, Wallrath LL. Using Drosophila for studies of intermediate filaments. Method Enzymol. 2016;568:707–26.
  • 78. Dialynas G, Flannery KM, Zirbel LN, Nagy PL, Mathews KD, Moore SA, et al. LMNA variants cause cytoplasmic distribution of nuclear pore proteins in Drosophila and human muscle. Hum Mol Genet. 2012;21(7):1544–56.
  • 79. Schulze SR, Curio-Penny B, Speese S, Dialynas G, Cryderman DE, McDonough CW, et al. A comparative study of Drosophila and human A-type lamins. PLoS One. 2009;4:e7564.
  • 80. Wallrath LL, Bohnekamp J, Magin TM. Cross talk between the cytoplasm and nucleus during development and disease. Curr Opin Genet Dev. 2016;37:129–36.
  • 81. Dialynas G, Shrestha OK, Ponce JM, Zwerger M, Thiemann DA, Young GH, et al. Myopathic Lamin mutations cause reductive stress and activate the Nrf2/Keap-1 pathway. PLoS Genet. 2015;11:e1005231.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-86b4aaf3-a999-4122-a755-9ec6b17bd105
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.