PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 5 |

Tytuł artykułu

Magnetically recoverable Fe3O4-modified bentonite as a heterogeneous catalyst of H2O2 activation for efficient degradation of methyl orange

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Clay-based materials provide an efficient and environmentally benign strategy for heterogeneous catalytic oxidation. In this study, a novel Fe₃O₄-modified bentonite (Fe₃O₄-BT) catalyst was obtained by using the hydrothermal method. The catalyst was characterized by transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The Fe₃O₄ nanoparticles mainly existed on the surface and in the outermost pores of the BT, thus exhibiting improved dispersion and lower levels of aggregation. The catalytic activity of Fe₃O₄-BT was assessed in the degradation of methyl orange (MO) in the presence of H₂O₂. Fe₃O₄-BT showed higher MO degradation efficiency than both bare Fe₃O₄ and BT. The initial H₂O₂ concentration, catalyst loading, temperature, and initial pH were optimized for the degradation of MO. The MO decolorization rate was still ~90% after the Fe₃O₄-BT was reused five times. Additionally, the degree of ferric ion dissolution was only 3.23 × 10⁻³ mg/L after 60 min. This novel catalyst was easily reclaimed by simple magnetic separation and exhibited good reusability and stability.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

5

Opis fizyczny

p.2355-2361,fig.

Twórcy

autor
  • Department of City Construction, Taiyuan City Vocational College, Taiyuan 030027, Shanxi, PR China

Bibliografia

  • 1. Ai L.H., Zhang C.Y., Chen Z.L. Removal of Methylene Blue from aqueous solution by a solvothermal-synthesized graphene/magnetite Composite. J. Hazard. Mater. 192 (3), 1515, 2011.
  • 2. Ai L.H., Zhou C.Y., Jiang J. Removal of Methylene Blue from aqueous solution by montmorillonite/CoFe₂O₄ composite with magnetic separation performance. Desalination. 266 (1-3), 72, 2011.
  • 3. Brillas E., Sirés I., Oturan M.A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Desalination. 109 (12), 6570, 2009.
  • 4. Chang J.L., MA J.C., Ma Q.L., Zhang D.D., Qiao N.N., Hu M.X., Ma H.Z. Adsorption of Methylene Blue onto Fe₃O₄/activated montmorillonite nanocomposite. Appl. Clay. Sci. 119 (1), 132, 2016.
  • 5. Wang Y.J., Zhao H.Y., Gao J.X., Zhao G.H., Zhang Y.G., Zhang Y.L. Rapid mineralization of azo-dye wastewater by microwave synergistic electro-Fenton oxidation process. J. Phys. Chem. C. 116 (13), 7457, 2012.
  • 6. Tušar N.N., Maucˇec D., Rangus M., Arcˇon I., Mazaj M., Cotman M., Pintar A., Kaucˇic V. Manganese functionalized silicate nanoparticles as a Fenton-type catalyst for water purification by advanced oxidation processes (AOP). Adv. Funct. Mater. 22 (4), 820, 2012.
  • 7. Zhang T., Zhu H., Croué J.-P. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe₂O₄ spinel in water: Efficiency, stability, and mechanism. Environ. Sci. Technol. 47 (6), 2784, 2013.
  • 8. Yao Y.J., Cai Y.M., Wei F.Y., Wei F.Y., Wang X.Y., Wang S.B. Magnetic recoverable MnFe₂O₄ and MnFe₂O₄-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J. Hazard. Mater. 270, 61, 2014.
  • 9. Yuan S.H., Fan Y., Zhang Y.C., Man T., Peng L. Pd-Catalytic in situ generation of H₂O₂ from H₂ and O₂ produced by water electrolysis for the efficient electro-Fenton degradation of Rhodamine B. Environ. Sci. Technol. 45 (19), 8514, 2011.
  • 10. Gladysz-Plaska A., Oszczak A., Fuks L., Majdan M. New effective sorbents for removal of Am241 from drinking water. Pol. J. Environ. Stud. 25 (6), 2401, 2016.
  • 11. Lee S.M., Tiwari D. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Appl. Clay Sci. 59–60, 84, 2012.
  • 12. Li W.B., Wan D., Wang G.H., Chen K., Hu Q.M, Lu L.L. Heterogeneous Fenton degradation of Orange II by immobilization of Fe₃O₄ nanoparticles onto Al-Fe pillared bentonite. Korean J. Chem. Eng. 33 (5), 1557, 2016.
  • 13. Zhang J.B., Zhuang J., Gao L., Zhang Y., Gu N., Feng J., Yang D.L., Zhu J.D., Yan X.Y. Decomposing phenol by the hidden talent of ferromagnetic nanoparticles original. Chemosphere. 73 (9), 1524, 2008.
  • 14. Wu W., Wu Z.H., Yu T.Y., Jiang C.Z., Kim W-S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16 (2), 1, 2015.
  • 15. Kaur R., Hasan A., Iqbal N., Iqbal N., Alam S., Saini M.K., Raza S.K. Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: A review. J. Sep. Sci. 37 (14), 1805, 2014.
  • 16. Ma J.C., Wang L.L., Wu Y.L., Zhao X.D., Dong X.S., Zhang J.L., Zhang Q.F., Qiao C., Ma Q.L. Role of precipitant species on the coprecipitation for preparing Fe₃O₄ nanoparticles. Optoelectron. Adv. Mat. 8 (11-12), 1077, 2014.
  • 17. Ma J.C., Wang L.L., Wu Y.L., Dong X.S., Ma Q.L., Qiao C., Zhang Q.F., Zhang J.L. Facile synthesis of Fe₃O₄ nanoparticles with a high specific surface area. Mater. Trans. 55 (12), 1900, 2014.
  • 18. Xuan S., Hao L., Jiang W., Gong X.L., Hua Y., Chen Z.Y. Preparation of water-soluble magnetite nanocrystals through hydrothermal approach. J. Magn. Magn. Mater. 308 (2), 210, 2007.
  • 19. Elmolla E., Chaudhuri M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution. J. Hazard. Mater. 170 (2), 666, 2009.
  • 20. Huang R.X., Fang Z.Q., Yan X.M., Cheng W. Heterogeneous Sono-Fenton catalytic degradation of bisphenol A by Fe₃O₄ magnetic nanoparticles under neutral condition. Chem. Eng. J. 197, 242, 2012.
  • 21. Hermanek M., Zboril R., Medrik I., Pechousek J., Gregor C. Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide:Competition between the surface area and crystallinity of nanoparticles. J. Am. Chem. Soc. 129 (35), 10929, 2007.
  • 22. Sun S-P., Lemley A.T. p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways. J. Mol. Catal. A Chem. 349 (1), 71, 2011.
  • 23. Kang N., Lee D.S., YOON J. Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere. 47 (9), 915, 2002.
  • 24. Laat J., Le T.G. Effects of Chloride Ions on the Iron(III)-catalyzed Decomposition of Hydrogen Peroxide and on the Efficiency of the Fenton-like Oxidation Process. Appl. Catal., B. 66 (1-2), 137, 2006.
  • 25. Friedrich L.C., Mendes M.A., Silva V.O., Zanta C.L.P.S., Jr A.M., Quina F.H. Mechanistic implications of zinc(II) ions on the degradation of phenol by the Fenton reaction. J. Braz. Chem. Soc. 23 (7), 1372, 2012.
  • 26. Barbusiński K. The modified Fenton process for decolorization of dye wastewater. Pol. J. Environ. Stud. 25 (1), 9, 2016.
  • 27. Ai Z.H., Gao Z.T., Zhang L.Z., He W.W., Yin J.J. Core-shell structure dependent reactivity of Fe@Fe₂O3 nanowires on aerobic degradation of 4-chlorophenol. Environ. Sci. Technol. 47 (10), 5344, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-86b336d5-36d8-4a6b-9a8c-5f1fc65dc837
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.