Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 4 |
Tytuł artykułu

Application of adsorption methods to determine the effect of pH and Cu-stress on the changes in the surface properties of the roots

Treść / Zawartość
Warianty tytułu
Języki publikacji
Rye plants were grown in a nutrient solution prepa- red according to Hoagland for 2 weeks at pH 7, next for 14 days at pH 4.5 (without Cu+2) and in the presence of 20, 50, or 100 mg dm-3 copper ions. The control plants were grown continuously at pH 7. The physicochemical surface properties of the roots were exa- mined using two adsorbates – polar (water vapour) and non-polar (nitrogen). The surface properties of the roots grown at pH 4.5 without Cu+2 were apparently the same as those of controls. The roots of rye which grew in the presence of Cu+2 were characte- rized by lower (relative to controls) specific surface area values. Statistically significant differences in the size of the apparent surface area (determined by water vapour) were reported for roots in- cubated with copper ions at a concentration of 20 and 50 mg dm-3. The average water vapour adsorption energy of the root surface decreased under the stress conditions. There were no statistically significant differences for the free surface area and characteristic energy of nitrogen adsorption.
Opis fizyczny
  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland
  • Ansari S.A., Pramond Kumar, and Gupta B.N., 1995. Root surface area measurements based on ad-sorption and desorption of nitrite. Plant Soil, 171, 33-137.
  • Aranovich G.L., 1992. The theory of polymolecular adsorption. Longmuir, 3, 736-739.
  • Arnon D.I. and Johnson C.M., 1942. Influence of hydrogen ion concentration on the growth of higher plants under controlled conditions. Plant Physiol., 17(4), 525-539.
  • Bernal M., Sánchez-Testillano P., Risueño M.C., and Yruela I., 2006. Excess copper induces structural changes in cultured photosynthetic soybean cells. Functional Plant Biol., 33, 1001-1012.
  • Buchanan B.B., Gruissem W., and Jones R.L., 2000. Biochemistry. Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, ML, USA.
  • Chiou C.T., Lee J.F., and Boyd S.A., 1990. The surface area of organic matter. Environ. Sci. Technol., 24, 1164-1166.
  • Jaroniec M. and Brauer P., 1986. Recent progress in determination of energetic heterogeneity of solids from adsorption data. Surface Science Reports, 6(2), 65-117.
  • Jaroniec M., Rudzinski W., Sokołowski S., and Smarzewski R., 1976. Determination of energy distribution function from observed adsorption isotherms. J. Colloid Polymer Sci., 253(2), 164-166.
  • Józefaciuk G. and Szatanik-Kloc A., 2001. Aluminium – induced changes in the surface and micro-pore properties of wheat roots: a study using the water vapor adsorption – desorption technique. Plant Soil, 233, 95-108.
  • Józefaciuk G. and Szatanik-Kloc A., 2003. Changes in specific area and energy of root surface of cereal plants in Al-solution cultures. Water vapor adsorption studies. Plant Soil, 250, 129-140.
  • Józefaciuk G., Łukowska M., and Szerement J., 2013. Determination of energetic and geometric properties of plant roots specific surface from adsorption/desorption isotherm. Am. J. Plant Sci., 4, 1554-1561.
  • Hall J.L., 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot., 53(366), 1-11.
  • Kabata-Pendias A. and Pendias H., 1999. Trace elements in soil and plants. CRC Press, Boca Raton, FL, USA.
  • Kopittke P.M. and Menzies N.W., 2006. Effect of Cu toxicity on growth of cowpea (Vigna unguiculata). Plant Soil, 279, 287-296.
  • Kowalczyk P., Tanaka H., Kanoh H., and Kaneko K., 2004. Adsorption energy distribution function from the Aranovich- Donohue lattice density functional theory. Langmuir, 20(6), 2324-2332.
  • Manara A., 2012. Plant responses to heavy metal toxicity. In: Plants and Heavy Met-als, Springer Briefs in Bio metals (Ed. A. Furini). DOI: 10.1007/978-94-007-4441-7_2,
  • Manivasagaperumal R., Vijayarengal P., Balamurugan S., and Thiyagarajan G., 2011. Effect of cop-per on growth, dry matter yield and nutrient content of Vigna radiata (L). J. Phytology, 3(3), 53-62.
  • Mantovi P. Bonazzi G., Maestri E., and Marmiroli N., 2003. Accumulation of copper and zinc from liq-uid manure in agricultural soils and crop plants. Plant Soil, 250, 249-257.
  • Michaud A.M., Chappellaz C., and Hinsinger P., 2008. Copper phototoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant Soil, 310, 151-165
  • Murphy A.S., Eisenger W.R., Shaff J.E., Kochian L.V., and Taiz L., 1999. Early copper-induced leakage of K+ from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiol., 121, 1375-1382.
  • Ościk J., 1982. Adsorption. Harwood Press, Chichester, UK.
  • Sedbrook J.C., Carroll K.L., Hung K.F., Masson P.H., and Somerville C.R., 2002. The arabidopsis SKU5 gene encodes an extra cellular glycosyl phosphatidylinositolanchored glycoprotein involved in directional root growth plant cell. Plant Cell, 14, 1635-1648.
  • Sheldon A.R. and Menzies N.W., 2005. The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil, 278, 341-349.
  • Starck Z., 2007. Mineral Nutrition of Plants. In: Plants Physiology (in Polish). (Eds J. Kopcewicz, S. Lewak). Scientific Publishers PAN SA, Warsaw, Poland.
  • Sukreeyapongse O., Holm P.E., Strobel B.W., Panichsakpatana S., Magid J., and Hansen H.C.B., 2002. pH dependent release of cadmium, copper, and lead from natural and sludgeamended soils. J. Environ. Qual., 31, 1901-1909.
  • Szatanik-Kloc A., 2010. Changes in surface properties of plant roots determined by aluminium and copper phytotoxicit (in Polish). Acta Agrophysica, 176, 1-121.
  • Szatanik-Kloc A., 2012. Effect of the pH and Zn-stress on micropore system of rye roots (Secale cereale L.) Int. Agrophys., 26, 311-316.
  • Tye A.M., Young S., Crout N.M.J., Zhang H., Preston S., Zhao F.J., and McGrath S.P., 2004. Speciation and solubility of Cu, Ni and Pb in contaminated soils. Eur. J. Soil Sci., 55, 579-590.
  • Yruela I., 2009. Copper in Plants: acquisition, transport and interrelations. Functional Plant Biology, 36(5), 409-430.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.