PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 19 | 5 |

Tytuł artykułu

Cd, As, Cu, and Zn transfer through dry to rehydrated biomass of Spirulina platensis from wastewater

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Phytoremediation of Cd, As, Cu, and Zn by Spirulina Platensis is one of the most cost-effective approaches and environmental friendly technologies used to remediate contaminants from contaminated water. The removal rates of Cd, As, Cu, and Zn in the field experiment were 14.95, 9.45, 35.55, and 73.95 μg/g/d, respectively. The highest concentrations of these metals accumulated in S. Platensis after 90 d of the laboratory/field collected samples were 58.9/98.68, 29.86/47.98, 43.28/235.86, and 249.67/390.65 μg/g dry wt., respectively, over the experiment. Only 55% Cd, 35% As, 85% Cu, and 95% of Zn removed from the water were used by S. Platensis. The bioconcentration factors were recorded for the metals in field/laboratory: for Cd (BCF=90/536), As (BCF=135/2,155), Cu (BCF=34,200/62,300) and Zn (BCF=32,500/95,300). The data obtained suggest that cyanobacterium S. Platensis has promising potential and can be used in a synergistic way to remediate wastewater polluted by Cd, As, Cu, and Zn.

Wydawca

-

Rocznik

Tom

19

Numer

5

Opis fizyczny

p.887-893,fig.,ref.

Twórcy

autor
  • Faculty of Civil and Environmental Engineering, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
autor
  • Faculty of Civil and Environmental Engineering, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
autor
  • Faculty of Civil and Environmental Engineering, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

Bibliografia

  • 1. KRAMER U. Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotech, 16, 133, 2005.
  • 2. SZYCZEWSKI P., SIEPAK J., NIEDZIELSKI P., SOBCZYŃSKI T. Research on Heavy Metals in Poland: Polish J. of Environmental Studies. 18, (5), 755, 2009.
  • 3. AUDET P., CHAREST C. Heavy metal phytoremediation from a meta-analytical perspective. Environ. Pollut, 147, 231, 2007.
  • 4. MORENO F.N., ANDERSON C.W.N., STEWARD R.B., ROBINSON B.H. Phytofiltration of mercury contaminated water: volatization and plant accumulation aspects. Environ. Exp. Bot. 62, 78, 2008.
  • 5. CIARKOWSKA K., HANUS-FAJERSKA E. Remediation of Soil-Free Grounds Contaminated by Zinc, Lead and Cadmium with the Use of Metallophytes. Polish J. of Environmental Studies. 17, (5), 707, 2008.
  • 6. GHASSEMZADEH F., YOUSEFZADEH H., ARBABZAVAR M.H. Removing Arsenic and Antimony by Phragmites australis: Rhizofiltration Technology, J. Appl. Sci. 8, (9), 1668, 2008.
  • 7. FILELLA M., BELZILE N., CHEN Y.W. Antimony in the Environment: a Review Focused on Natural Waters I. Occurrence, Earth-Sci. Rev. 57, 125, 2002.
  • 8. SMEDLEY P.L., KINNIBURGH D.G., A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters, Appl. Geochem. 37, (5), 517, 2002.
  • 9. KAMAL M., GHALY A.E., MAHMOUD N., COTE R. Phytoaccumulation of Heavy Metals by Aquatic Plants, J. Environ. Int. 29, 1029, 2004.
  • 10. WICKRAMASINGHE S.R., HAN B., ZIMBRON J., SHEN Z. Arsenic Removal by Coagulation and Filtration: Comparison of Groundwater from the United States and Bangladesh, Desalination, 169, (3), 231, 2004.
  • 11. ZHANG Y., YANG M., HUANG X. Arsenic (V) Removal with a Ce (IV)-doped Iron Oxide Adsorbent, Chemosphere 51, 945, 2003.
  • 12. KIM J., BENJAMIN M.M. Modeling a Novel Ion Exchange Process for Arsenic and Nitrate Removal, Water Res. 38, 2053, 2004.
  • 13. KUMAR P.R., CHAUDHARI S., KHILAR K.C., MAHAJAN S.P. Removal of Arsenic from Water by Electrocoagulation, Chemosphere 55, 1245, 2004.
  • 14. WANG Q., CUI Y., DONG Y. Phytoremediation of Polluted Waters: Potentials and Prospects of Wetland Plants, Acta Biotechnol 22, (1-2), 199, 2002.
  • 15. ALVARADO S., GUEDEZ M., LUE-MERU M.P., NELSON G. Arsenic Removal from Waters by Bioremediation with the Aquatic Plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor), Biores. Technol. 99, 8436, 2008.
  • 16. GARBISU C., ALKORTA I. Phytoextraction: a Costeffective Plant Based Technology for the Removal of Metals from the Environment, Biores. Technol. 77, (3), 229, 2001.
  • 17. GONG R., DING Y., LIU H., CHEN Q., LIU Z. Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass, Chemosphere 58, 125, 2005.
  • 18. LAMAIA C., KRUATRACHUEA M., POKETHITIYOOKA P., UPATHAMB E.S., SOONTHORNSARATHOOLA V. Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta (O.F. Muller ex Vahl) Kutzing: A laboratory study. Science Asia 31, 121, 2005.
  • 19. TRIPATHI R.D., SRIVASTAVA S., MISHRA S., SINGH N., TULI R., GUPTA D.K., MAATHUIS F.J.M. Arsenic hazards: strategies for tolerance and remediation by plants, Trends Biotechnol. 25, 158, 2007.
  • 20. MALIK A. Environmental challenges vis a vis opportunity: the case of water hyacinth, Environ. Int. 33, 122, 2007.
  • 21. ROBINSON B., DUWIQ C., BOLAN N., KANNATHASAN M. Uptake of Arsenic by New Zealand Watercress (Lepidium sativum), Sci. Total Enviro. 301, (1-3), 67, 2003.
  • 22. CHOJNACKA K., CHOJNACKI A., GÓRECKA H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process, Chemosphere 59, 75, 2005.
  • 23. MKANDAWIRE M., DUDEL E.G. Accumulation of Arsenic in Lemna gibba L. (duckweed) in Tailing Waters of Two Abandoned Uranium Mining Sites in Saxony, Germany, Sci. Total Environ 336, 81, 2005.
  • 24. SAHU R.K., NARAIAN R., CHANDRA V. Accumulation of Metals in Naturally Grown Weeds (Aquatic Macrophytes) Grown on an Industrial Effluent Channel, Clean 35, (3), 261, 2005.
  • 25. MISHRA V.K., TRIPATHI B.D. Concurrent Removal and Accumulation of Heavy Metals by the Three Aquatic Macrophytes, Biores. Technol 99, 7091, 2008.
  • 26. PENG K., LUO C., LOU L., LI X. Bioaccumulation of Heavy Metals by the Aquatic Plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their Potential Use for Contamination Indicators and in Wastewater Treatment, Sci. Total Environ 392, 22, 2008.
  • 27. RAI P.K. Heavy Metal Pollution in Aquatic Ecosystems and its Phytoremediation Using Wetland Plants: an Ecosustainable Approach, Int. J. Phytoremed 10, (2), 131, 2008.
  • 28. GREGER M., MALM T., KAUTSKY L. Heavy metal transfer from composted macroalgae to crops. Europ. J. Agronomy 26, 257, 2007.
  • 29. RANGSAYATORN N., POKETHITIYOOK P., UPATHAM E.S., LANZA G.R. Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel, Environ. Int. 30, 57, 2005.
  • 30. SATOHA A., VUDIKARIAB L.Q., KURANOA N., MIYACHIA S. Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environ. Intern 31, 713, 2005.
  • 31. BORIŠEV M., PAJEVIĆ S., NIKOLIĆ N., PILIPOVIĆ A., KRSTIĆ B., ORLOVIĆ S. Phytoextraction of Cd, Ni, and Pb Using Four Willow Clones (Salix spp.). Polish J. of Environmental Studies. 18, (4), 553, 2009.
  • 32. SOLISIO C., LODI A., TORRE P., CONVERTI A., DEL BORGHI M. Copper removal by pre-treated non-living biomass of Spirulina platensis, Bioresour. Technol 97, (14) 1756, 2006.
  • 33. TU C., MA L.Q., BONDADA B. Arsenic Accumulation in the Hyperaccumulator Chinese Brake and its Utilization Potential for Phytoremediation, J. Environ. Qual 31, 1671, 2002.
  • 34. RAHMAN M.A., HASEGAWA H., UEDA K., MAKI K. Arsenic Accumulation in Duckweed (Spirodela polyrhiza L.): a Good Option for Phytoremediation, Chemosphere 69, 493, 2007.
  • 35. BALSBERG P.A.M. Toxicity of Heavy Metals (Zn, Cu, Cd, Pb) to Vascular Plants, Water, Air, and Soil Pollut 47, 287, 1989.
  • 36. LI T., XIONG Z.T. A Novel Response of Wild-Type Duckweed (Lemna paucicostata Hegelm.) to Heavy Metals, Environ. Toxicol 19, 95, 2004.
  • 37. TLUSTOS P., PAVLIKOVA D., SZAKOVA J., BALIK J. Phytoremediation of Metal-Contaminated Soils (Eds: J.-L. Morel, G. Echevarria, N. Goncharova), Springer, Netherlands, pp. 25-52, 2006.
  • 38. LIU J., DONG Y., XU H., WANG D. Accumulation of Cd, Pb and Zn by 19 Wetland Plant Species in Constructed Wetland, J. Hazardous Materials 147, (3), 947, 2007.
  • 39. TRIPATHI B. N. GAUR J.P. Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma, 229, 1, 2006.
  • 40. WANG J., CHEN C. Biosorption of heavy metals by Saccharomyces cerevisiae. Biotechnol. Adv., 24, 427, 2006.
  • 41. CHAO W., XIAO-CHEN L., LI-MIN Z., PEI-FANG W., ZHI-YONG G. Pb, Cu, Zn and Ni Concentrations in Vegetables in Relation to Their Extractable Fractions in Soils in Suburban Areas of Nanjing, China. Polish J. of Environmental Studies. 16, (2), 199, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-86124c29-4fc6-42eb-9d82-daa4a985186a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.