PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

The norpurpureine alkaloid from Annona purpurea inhibits human platelet activation in vitro

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: The leaves of Annona purpurea have yielded several alkaloids with anti-aggregation activities against rabbit platelets. This is promising in the search for agents that might act against platelets and reduce the incidence of cardiovascular diseases. Since significant differences in platelet function have been reported between human and animal platelets, a study focusing on the effect of A. purpurea extracts against human platelet activation is necessary. Methods: The compounds in an A. purpurea ethanolic extract underwent bio-guided fractionation and were used for in vitro human platelet aggregation assays to isolate the compounds with anti-platelet activity. The bioactive compounds were identified by spectroscopic analysis. Additional platelet studies were performed to characterize their action as inhibitors of human platelet activation. Results: The benzylisoquinoline alkaloid norpurpureine was identified as the major anti-platelet compound. The IC50 for norpurpureine was 80 μM against platelets when stimulated with adenosine 5′-diphosphate (ADP), collagen and thrombin. It was pharmacologically effective from 20 to 220 μM. Norpurpureine (220 μM) exhibited its in vitro effectiveness in samples from 30 healthy human donors who did not take any drugs during the 2 weeks prior to the collection. Norpurpureine also gradually inhibited granule secretion and adhesion of activated platelets to immobilized fibrinogen. At the intra-platelet level, norpurpureine prevented agonist-stimulated calcium mobilization and cAMP reduction. Structure–activity relationship analysis indicates that the lack of a methyl group at the nitrogen seems to be key in the ability of the compound to interact with its molecular target. Conclusion: Norpurpureine displays a promising in vitro pharmacological profile as an inhibitor of human platelet activation. Its molecular target could be a common effector between Ca2+ and cAMP signaling, such as the PLC-PKC-Ca2+ pathway and PDEs. This needs further evaluation at the protein isoform level.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-14,fig.,ref.

Twórcy

autor
  • Centro de Biofísica y Bioquímica (CBB), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Bolivarian Republic of Venezuela
autor
  • Centro de Biofísica y Bioquímica (CBB), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Bolivarian Republic of Venezuela
autor
  • Centro de Biofísica y Bioquímica (CBB), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Bolivarian Republic of Venezuela
autor
  • Centro de Biofísica y Bioquímica (CBB), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Bolivarian Republic of Venezuela
autor
  • Centro de Biofísica y Bioquímica (CBB), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Bolivarian Republic of Venezuela
  • Centro de Biofísica y Bioquímica (CBB), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Bolivarian Republic of Venezuela
  • Laboratorio de Hemostasia y Genética Vascular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, K11 de la Carretera Panamericana, Caracas 1020-A, Bolivarian Republic of Venezuela

Bibliografia

  • 1. Chua D, Nishi C. New antiplatelet agents for cardiovascular disease. Can Med Assoc J. 2013;185:1405–11.
  • 2. Lau WC, Gurbel PA. Antiplatelet drug resistance and drug-drug interactions: role of cytochrome P450 3A4. Pharm Res. 2006;23:2691–708.
  • 3. World Health Organization: The top 10 causes of death. Accessed 4 Apr 2018. http://www.who.int/gho/mortality_burden_ disease/causes_death/top_10/en/
  • 4. El Haouari M, Rosado JA. Medicinal plants with antiplatelet activity. Phytother Res. 2016;30:1059–71.
  • 5. Wu YC, Chang GY, Ko FN, Teng CM. Bioactive constitutents from the stems of Annona montana. Planta Med. 1995; 61:146–9.
  • 6. Chang FR, Wei JL, Teng CM, Wu YC. Antiplatelet aggregation constituents from Annona purpurea. J Nat Prod. 1998;61:1457–61.
  • 7. Chang FR, Wei JL, Teng CM, Wu YC. Two new 7-dehydroaporphine alkaloids and antiplatelet action aporphines from the leaves of Annona purpurea. Phytochemistry. 1998;49:2015–8.
  • 8. Yang YL, Chang FR, Wu CC, Wang WY, Wu YC. New ent-kaurane diterpenoids with anti-platelet aggregation activity from Annona squamosa. J Nat Prod. 2002;65:1462–7
  • 9. Missouri Botanical Garden: Tropicos.org. Saint Louis, Missouri. Accessed 21 Nov 2017. http://www.tropicos.org/ Name/1600805
  • 10. Nunn B. Some characteristics of mouse platelet aggregation and a comparison of the activity of a range of compounds in mouse and human platelet-rich plasma in vitro. Thromb Haemost. 1981;45:1–5.
  • 11. Packham MA, Bryant NL, Guccione MA, Kinlough-Rathbone RL, Mustard JF. Effect of the concentration of Ca2+ in the suspending medium on the responses of human and rabbit platelets to aggregating agents. Thromb Haemost. 1989;62:968–76.
  • 12. Packham MA, Rand ML, Kinlough-Rathbone RL. Similarities and differences between rabbit and human platelet characteristics and functions. Comp Biochem Physiol. 1992;103:35–54.
  • 13. Ware J. Dysfunctional platelet membrane receptors: from humans to mice. Thromb Haemost. 2004;92:478–85.
  • 14. The Plant List (2013). Version 1.1. Accessed 21 Nov 2017. http://www.theplantlist.org/tpl1.1/record/kew-2640992
  • 15. Cazenave JP, Ohlmann P, Cassel D, Eckly A, Hechler B, Gachet C. Preparation of washed platelet suspensions from human and rodent blood. Method Mol Biol. 2004;272:13–28.
  • 16. Born G. Aggregation of blood platelet by adenoside diphosphate and its reversal. Nature. 1962;194:927–9.
  • 17. Estrada O, Alvarado-Castillo C, Fernández AZ, López M, Romero-Vecchione E, Vásquez J, Mendez J, Conde D, Cardozo A. Pomolic acid isolated from the leaves of Licania pittieri inhibits ADP-and epinephrine-induced platelet aggregation and has hypotensive effect on rats. Curr Bioact Compd. 2009;5:219–25.
  • 18. Stermitz FR, Castro O. Pentasubstituted aporphine alkaloids from Phoebe molicella. J Nat Prod. 1983;46:913–6.
  • 19. Eriksson AC, Whiss PA. Measurement of adhesion of human platelets in plasma to protein surfaces in microplates. J Pharmacol Toxicol Methods. 2005;52:356–65.
  • 20. Pérez JF, Ruiz MC, Chemello ME, Michelangeli F. Characterization of a membrane calcium pathway induced by rotavirus infection in cultured cells. J Virol. 1999;73:2481–90.
  • 21. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260:3440–50.
  • 22. Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb Haemost. 2009;7:1057–66.
  • 23. Heemskerk JW, Harper MT, Cosemans JM, Poole AW. Unravelling the different functions of protein kinase C isoforms in platelets. FEBS Lett. 2011;585:1711–6.
  • 24. Smolenski A. Novel roles of cAMP/cGMP-dependent signaling in platelets. J Thromb Haemost. 2012;10:167–76.
  • 25. Chia YC, Chang FR, Wu CC, Teng CM, Chen KS, Wu YC. Effect of isoquinoline alkaloids of different structural types on antiplatelet aggregation in vitro. Planta Med. 2006;72:1238–41.
  • 26. Tsuchiya H. Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants. Molecules. 2015;20:18923–66.
  • 27. De La Cruz JP, Arrebola MM, Guerrero A, Sánchez de la Cuesta F. Influence of nitric oxide on the in vitro antiaggregant effect of ticlopidine. Vasc Pharmacol. 2002;38:183–6.
  • 28. Yun SH, Sim EH, Goh RY, Park JI, Han JY. Platelet activation: the mechanisms and potential biomarkers. Biomed Res Int. 2016;2016:9060143. https://doi.org/10.1155/2016/9060143
  • 29. Menezes LRA, D’Sousa Costa CO, Da C Rodrigues ACB, Do E Santo FR, Nepel A, Dutra LM, Silva FMA, Soares MBP, Barison A, Costa EV, Bezerra DP. Cytotoxic Alkaloids from the Stem of Xylopia laevigata. Molecules. 2016;21:890–900.
  • 30. Bye AP, Unsworth AJ, Gibbins JM. Platelet signaling: a complex interplay between inhibitory and activatory networks. J Thromb Haemost. 2016;14:918–30.
  • 31. Murugappan S, Tuluc F, Dorsam RT, Shankar H, Kunapuli SP. Differential role of protein kinase Cδ isoform in agonist-induced dense granule secretion in human platelets. J Biol Chem. 2004;279:2360–7.
  • 32. Yue C, Dodge KL, Weber G, Sanborn BM. Phosphorylation of serine 1105 by protein kinase A inhibits phospholipase Cβ3 stimulation by Gαq. J Biol Chem. 1998;273:18023–7.
  • 33. Supattapone S, Danoff SK, Theibert A, Joseph SK, Steiner J, Snyder SH. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci U S A. 1988;85:8747–50.
  • 34. Rondina MT, Weyrich AS. Targeting phosphodiesterases in anti-platelet therapy. Handb Exp Pharmacol. 2012;210:225–38.
  • 35. Schwarz UR, Walter U, Eigenthaler M. Taming platelets with cyclic nucleotides. Biochem Pharmacol. 2001;62:1153–61.
  • 36. Hunter RW, MacKintosh C, Hers I. Protein kinase C-mediated phosphorylation and activation of PDE3A regulate cAMP levels in human platelets. J Biol Chem. 2009;284:12339–48.
  • 37. Böhlke M, Guinaudeau H, Angerhofer CK, Wongpanich V, Soejarto DD, Farnsworth NR. Costaricine, a new antiplasmodial bisbenzylisoquinoline alkaloid from Nectandra salicifolia trunk bark. J Nat Prod. 1996;59:576–80.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-85f9d825-b289-471a-b37b-657cd3880558
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.