PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 586 |

Tytuł artykułu

Stabilność materiału roślinnego po krioprezerwacji

Autorzy

Treść / Zawartość

Warianty tytułu

EN
Stability of plant material after cryopreservation

Języki publikacji

PL

Abstrakty

PL
W pracach poświęconych krioprezerwacji często pomija się weryfikację stabilności przechowywanych prób. Aby jednak było możliwe wprowadzenie tkanek do ciekłego azotu, konieczne jest ich wcześniejsze przygotowanie związane z zastosowaniem kultur in vitro, krioprotektantów oraz odwadniania. Te etapy procedury kriozabezpieczania mogą przyczynić się do wystąpienia zmienności. Może się ona objawiać na poziomie sekwencji DNA, ploidalności, aktywności metabolicznej i/lub fenotypu. Możliwe są także zmiany o charakterze epigenetycznym. Rzadko jednak się zdarza, aby zmiany te pojawiały się na wszystkich poziomach. Zwykle wykrywane są one na poziomie genetycznym (sekwencji DNA) lub epigenetycznym (metylacji cytozyny), rzadziej natomiast rzutują na fenotyp uzyskanych roślin. Zasadniczo nie obserwuje się zmian ploidalności czy zawartości jądrowego DNA. Zdarza się także, że obserwowana zmienność z czasem mija. Zwykle w celu weryfikacji stabilności materiału po krioprezerwacji wykorzystuje się markery molekularne. Tylko wyjątkowo w badaniach użyto dwa markery lub więcej. Obraz stabilności roślin po krioprezerwacji pozostaje więc wciąż nie w pełni poznany.
EN
Every year the number of the plant cultivars available is increasing. The new highly-efficient but scarce cultivars are replacing the previous, more numerous, ones. The old cultivars, however, constitute a very important source of genes for breeding. In order to prevent genetic erosion, it is essential to develop efficient long-term storage methods for countless cultivars and plant species. Today cryopreservation is believed to be the most effective technique; the plant material is stored in liquid nitrogen at –196°C. Cryopreservation has been developing rapidly since the 1940s. Over time several cryopreservation techniques have been developed. Long-standing studies have facilitated the optimization of cryopreservation protocols of numerous usable, ornamental, medicinal and threatened plant species in terms of high survival and recovery rates recorded after thawing. The genetic liquid-nitrogen-derived plants stability verification is, however, often neglected. A properly optimized procedure should not trigger any (negative) biological material alternations. It is generally assumed that storage in liquid nitrogen itself does not cause any changes in plant properties; Earth radiation not included. However, to make the intravital tissues storage at such low temperature possible, first a proper protection is required, which is associated with the application of in vitro cultures, chemical cryoprotectants and dehydration. Those steps may contribute to the occurrence of variation. Alternations affect the DNA sequence, chromosome number, ultrastructural, metabolic activity and/or phenotype levels. Epigenetic changes are also possible and sometimes they are even more frequent than the genetic ones. Such changes, however, are not observed at all levels at the same time. Usually they are detectable in the DNA sequence or at the cytosine methylation level. Phenotype alternations are less frequently described. In general cryopreservation affects neither the ploidy level nor the amount of nuclear DNA. It is sometimes observed that the variation intensity changes in time and occurs at specific developmental stages of the plant. Usually, in order to verify the stability of the plant material recovered after cryopreservation, molecular markers (RAPD, ISSR, AFLP etc.) are applied. It is uncommon to use more than one or two (usually molecular and cytogenetic) stability marker types. In the past phenotype markers were more popular, however today they are infrequently used. Still, even though they are time-consuming, phenotype markers provide valuable information, which is especially important with ornamental plants and chimeras, in particular. In general there is no complete information on plant stability after cryopreservation. A complex issue analysis is still required. The aim of this paper is to gather information on plant material stability after cryostorage.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

586

Opis fizyczny

s.109-123,bibliogr.

Twórcy

autor
  • Uniwersytet Technologiczno-Przyrodniczy im.J.J.Śniadeckich w Bydgoszczy

Bibliografia

  • Adu-Gyamfi R., Wetten A., Lopez C.M.R., 2016. Effect of cryopreservation and post-cryopreservation somatic embryogenesis on the epigenetic fidelity of cocoa (Theobroma cacao L.). Plos One, doi: 10.1371/journal.pone.0158857.
  • Ai P.F., Lu L.P., Song J.J., 2012. Cryopreservation of in vitro-grown shoot-tips of Rabdosia rubescens by encapsulation-dehydration and evaluation of their genetic stability. Plant Cell Tiss. Org. Cult. 108, 381–387.
  • Álvarez R., Revilla M.A., Ordás R.J., 2007. Transgene stability in cryopreserved cork oak somatic embryos. Cryopreservation of Crop Species in Europe, Oviedo, 46–47.
  • Antony J.J.J., Poobathy R., Danial M., Sinniah U.R., Subramaniam S., 2012. Polymorphism analysis of cryopreserved Dendrobium Bobby Messina protocorm-like bodies (PLBs) using RAPD markers. Plant Omics 5, 427–431.
  • Antony J.J.J., Wai L.K., Oyunbileg Y., Subramaniam S., 2015. Characterization of the second generation cryopreserved Dendrobium Bobby Messina using histological and RAPD analyses. Mongolian J. Biol. Sci. 13(1–2), 13–18.
  • Aronen T.S., Krajnakova J., Haggman H., Ryynänen L., 1999. Genetic fidelity of cryopreserved embryonic cultures of open-pollinated Abies cephalonica. Plant Sci. 142, 163–172.
  • Berjak P., Bartels P., Benson E.E., Harding K., Mycock D.J., Pammenter-Sershen N.W., WesleySmith J., 2011. Cryoconservation of South African plant genetic diversity. In Vitro Cell. Dev. Biol. – Plant 47, 65–81.
  • Bi W.-L., Pan C., Liu J., Wang Q-C., 2016. Greenhouse performance, genetic stability and biochemical compounds in Chrysanthemum morifolium ‘Hangju’ plants regenerated from cryopreserved shoot tips. Acta Physiol. Plant. 38, 268.
  • Burritt D.J., 2008. Efficient cryopreservation of adventitious shoots of Begonia ×erythrophylla using encapsulation-dehydration requires pretreatment with both ABA and proline. Plant Cell Tiss. Org. Cult. 95, 209–215.
  • Castillo N.R.F., Bassil N.V., Wada S., Reed B.M., 2010. Genetic stability of cryopreserved shoot tips of Rubus germplasm. In Vitro Cell. Dev. Biol. – Plant 46, 246–256.
  • Chen T.H., Kartha K.K., Leung N.L., Kurz W.G., Chatson K.B., Constabel F., 1984. Cryopreservation of alkaloid-producing cell cultures of periwinkle (Catharanthus roseus). Plant Physiol. 75(3), 726–731.
  • Cho J.S., Hong S.M., Joo S.Y., Yoo J.S., Kim D.I., 2007. Cryopreservation of transgenic rice suspension cells producing recombinant hCTLA4Ig. App. Microbiol. Biotech. 73, 1470–1476.
  • De Verno L.L., Park Y.S., Bonga J.M., Barrett J.D., Simpson C., 1999. Somaclonal variation in cryopreserved embryogenic clones of white spruce [Picea glauca (Moench) Voss.]. Plant Cell Rep. 18(11), 948–953.
  • Dixit S., Mandal B.B., Ahuja S., Srivastava P.S., 2003. Genetic stability assessment of plants regenerated from cryopreserved embryogenic tissues of Dioscorea bulbifera L. using RAPD, biochemical and morphological analysis. CryoLett. 24, 77–84.
  • Dowrick G.J., El-Bayoumi A., 1966. The origin of new forms of the garden chrysanthemum. Euphytica 15, 32–38.
  • Fukai S., Goi M., Tanaka M., 1991. Cryopreservation of shoot tips of Chrysanthemum morifolium and related species native to Japan. Euphytica 54, 201–204.
  • Fukai S., Goi M., Tanaka M., 1994. The chimeric structure of the apical dome of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitam.) is affected by cryopreservation. Sci. Hortic. 57, 347–351.
  • González-Arnao M.T., Durán-Sánchez B., Jiménez-Francisco B., Lázaro-Vallejo C.E., Valdés-Rodríguez S.E., Guerrero A., 2009. Cryopreservation and proteomic analysis of vanilla (V. planifolia A.) apices treated with osmoprotectants. Acta Hortic. 908, 67–72.
  • Grapin A., Gallard A., Le Bras C., Dorion N., 2011. Cryopreservation, an efficient tool for Pelargonium species long-term conservation. W: A. Grapin i in. (red.) Cryopreservation of crop species in Europe. COST Europ. Coop. Sci. Technol., Angers, 138–140.
  • Grotewold E., 2006. The genetics and biochemistry of floral pigments. Ann. Rev. Plant Biol. 57, 761–780.
  • Grout B.W.W., 1995. Genetic preservation of plant cells in vitro. Springer-Verlag, Berlin, Heidelberg.
  • Häggman H.M., Ryynänen L.A., Aronen T.S., Krajnakova J., 1998. Cryopreservation of embryogenic cultures of Scots pine. Plant Cell Tiss. Org. Cult. 54(1), 45–53.
  • Halmagyi A., Deliu C., 2007. Cryopreservation of carnation (Dianthus caryophyllus L.) shoot tips by encapsulation-vitrification. Sci. Hortic. 113, 300–306.
  • Hao Y.J., You C.X., Deng X.X., 2002a. Analysis of ploidy and the patterns of amplified fragment length polymorphism and methylation sensitive amplified polymorphism in strawberry plants recovered from cryopreservation. CryoLett. 23(1), 37–46.
  • Hao Y.J, You C.X., Deng X.X., 2002b. Effects of cryopreservation on developmental competency, cytological and molecular stability of citrus callus. CryoLett. 23(1), 27–35.
  • Harding K., 1991. Molecular stability of the ribosomal RNA genes in Solanum tuberosum plants recovered from slow growth and cryopreservation. Euphytica 55(2), 141–146.
  • Harding K., 2010. Plant and algal cryopreservation, issues in genetic integrity, concepts in cryobionomics and current application in cryobiology. Asia–Pacific J. Mol. Biol. Biotech. 18(1), 151–154.
  • Hirano T., Godo T., Mii M., Ishikawa K., 2005. Cryopreservation of immature seeds of Bletilla striata by vitrification. Plant Cell Rep. 23(8), 534–539.
  • Hitmi A., Sallanon H., Barthomeuf C., 1997. Cryopreservation of Chrysanthemum cinerariaefolium Vis. cells and its impact factor on their pyrethrin biosynthesis ability. Plant Cell Rep. 17, 60–64.
  • Hosoki T., 1989. In vitro storage of Chrysanthemum morifolium at room temperature. Plant Tiss. Cult. Lett. 6(2), 86–87.
  • Jitsopakul N., Thammasiri K., Ishikawa K., 2009. Cryopreservation of Vanda coerulea protocormlike bodies by droplet-vitrification. Acta Hortic. 908, 207–213.
  • Johnston J.W., Benson E.E., Harding K., 2009. Cryopreservation induces temporal DNA methylation epigenetic changes and differential transcriptional activity in Ribes germplasm. Plant Physiol. Biochem. 47(2), 123–31.
  • Jokipii S., Ryynänen L., Kallio P.T., Aronen T., Häggman H., 2004. A cryopreservation method maintaining the genetic fidelity of a model forest tree, Populus tremula L. × Populus tremuloides Michx. Plant Sci. 166, 79–806.
  • Kaity A., Ashmore S.E., Drew R.A., 2009. Field performance evaluation and genetic integrity assessment of cryopreserved papaya clones. Plant Cell. Rep. 28(9), 1421–1430.
  • Kaity A., Ashmore S.E., Drew R.A., Dulloo M.E., 2008. Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Rep. 27(9), 1529–1539.
  • Lee G-J., Chung S.J., Park I.S., Lee J.S., Kim J-B., Kim D.S., Kang S-Y., 2008. Variation in the phenotypic features and transcripts of color mutants of chrysanthemum (Dendranthema grandiflorum) derived from gamma ray mutagenesis. J. Plant Biol. 51(6), 418–423.
  • Lee Y.G., Popova E., Cui H.Y., Kim H.H., Park S.U., Bae C.H., Lee S.C., Engelmann F., 2011. Improved cryopreservation of chrysanthemum (Chrysanthemum morifolium) using droplet–vitrification. CryoLett. 32(6), 486–497.
  • Maki S., Hirai Y., Niino T., Matsumoto T., 2015. Assessment of molecular genetic stability between long-term cryopreserved and tissue cultured wasabi (Wasabia japonica) plants. CryoLett. 36(5), 318–324.
  • Malepszy S., Niemrowicz-Szczytt K., Przybecki Z., 1989. Biotechnologia w genetyce i hodowli roślin. Państwowe Wydawnictwo Naukowe, Warszawa.
  • Martín C., Cervera M.T., González-Benito M.E., 2011. Genetic stability analysis of chrysanthemum (Chrysanthemum ×morifolium Ramat) after different stages of an encapsulationdehydration cryopreservation protocol. J. Plant Physiol. 168, 158–166.
  • Martín C., González-Benito E., 2005. Survival and genetic stability of Dendranthema grandiflora Tzvelev shoot apices after cryopreservation by vitrification and encapsulation-dehydration. Cryobiol. 51, 281–289.
  • Martín C., González-Benito E., 2006. Sequence comparison in somaclonal variant of cryopreserved Dendranthema grandiflora shoot apices. Cryobiol. 53, 367–446.
  • Martín C., González-Benito E., 2009. Cryopreservation and genetic stability of Dendranthema grandiflora Tzvelev in vitro cultures. Agric. Food Sci. 18, 129–135.
  • Medina J.J., Clavero-Ramírez I., González-Benito M.E., Gálvez-Farfán J., López-Aranda J.M., Soria C., 2007. Field performance characterization of strawberry (Fragaria ×ananassa Duch.) plants derived from cryopreserved apices. Sci. Hortic. 113, 28–32.
  • Meyer V.G., 1966. Flower abnormalities. Bot. Rev. 32, 165–195.
  • Mikuła A., 2010. Krioprezerwacja w zabezpieczaniu (epi)genetycznej stabilności materiału roślinnego. Biotechnologia 2(89), 23–37.
  • Mikuła A., Olas M., Śliwińska E., Rybczyński J.J., 2008. Cryopreservation by encapsulation of Gentiana spp. cell suspensions maintains regrowth, embryogenic competence and DNA content. CryoLett. 29(5), 409–418.
  • Mikuła A., Rybczyński J.J. 2009. Assesement of Gentiana cruciata and G. tibetica regenerants derived from cryopreserved cell suspensions. Acta Hortic. 908, 27.
  • Mikuła A., Tomiczak K., Rybczyński J.J., 2011a. Cryopreservation enhances embryogenic capacity of Gentiana cruciata (L.) suspension culture and maintains (epi)genetic uniformity of regenerants. Plant Cell Rep. 30(4), 565–574.
  • Mikuła A., Tomiczak K., Wójcik A., Rybczyński J.J., 2011b. Encapsulation–dehydration method elevates embryogenic abilities of Gentiana kurroo cell suspension and carrying on genetic stability of its regenerants after cryopreservation. Acta Hortic. 908, 143–154.
  • Nery F.C., Paiva R., da Silva D.P.C., Campos A.C.A.L., de Campos M.S., 2009. Nuclear DNA integrity of cryopreserved embryonic axes of Anadenanthera colubrina (Vell.) Brenan. Acta Hortic. 908, 139–141.
  • Pasqual M., Salles Pio M.A., Lima Oliveira A.C., Rodrigues Soares J.D., 2012. Flow cytometry applied in tissue culture. W: A. Leva i L.M.R. Rinaldi (red.) Recent Advances in Plant In Vitro Culture. InTech, str. 109–122.
  • Poobathy R., Xavieer R., Sinniah U.R., Subramaniam S., 2013. Molecular stability of protocorm-like bodies of Dendrobium sonia-28 after encapsulation-dehydration and vitrification. Australian J. Crop Sci. 7(2), 189–195.
  • Popova E.V., Kim H.H., Yi J.Y., Choi Y.M., Sung J.S., Jeon Y.A., Kang M., 2010. Cryopreservation of chrysanthemum via droplet–vitrification method. Cryobiol. 64(3), 1.
  • Revilla M.A., Arroyo-Garcia R., Peredo E.L., 2009. Is the in vitro establishement a critical point in the (epi)genetic stability of the cryopreserved material? W: 1st Symposium, Cryopreservation in Horticultural Species, Book of Abstracts. ISHS, Leuven.
  • Rival A., Turquay P., Samosir Y., Adkins S.W., 2010. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings. Planta 232, 435–447.
  • Salaj T., Matusikova I., Fraterova L., Pirselova B., Salaj J., 2011. Regrowth of embryogenic tissues of Pinus nigra following cryopreservation. Plant Cell Tiss. Org. Cult. 106, 55–61.
  • Sánchez C., Martínez M.T., Vidal N., San-Jose M.C., Valladare S., Vieitez A.M., 2008. Preservation of Quercus robur germplasm by cryostorage of embryogenic cultures derived from mature trees and RAPD analysis of genetic stability. CryoLett. 29(6), 493–504.
  • Skyba M., Urbanová M., Kapchina-Toteva V., Kosuth J., Harding K., Cellárová E., 2010. Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoot tips. CryoLett. 31(3), 249–60.
  • Sopalun K., Kanchit K., Ishikawa K., 2010. Vitrification–based cryopreservation of Grammatophyllum speciosum protocorm. CryoLett. 31(4), 347–357.
  • Surenciski M.R., Dematteis M., Flachsland E., 2007. Chromosome stability in cryopreserved germplasm of Cyrtopodium hatschbachii (Orchidaceae). Ann. Bot. Fennici 44, 287–292.
  • Van Huylenbroeck J., Calsyn E., 2009. Cryopreservation of an azalea germplasm collection. Acta Hortic. 908, 489–493.
  • Vázquez A.M., 2007. Cryopreservation and genetic instability. COST Eur. Coop. Sci. Technol., Oviedo.
  • Volk G.M., Henk A., Basu C., 2011. Gene expression in response to cryoprotectants and liquid nitrogen exposure in Arabidopsis shoot tips. Acta Hortic. 908, 55–66.
  • Wang Q., Wang R., Li B., Cui Z., 2012. Cryopreservation, a strategy technique for safe preservation of genetically transformed plant materials. Adv. Genet. Eng. Biotech. 1(1), 1–2.
  • Wang Z., He Y., 2009. Effect of cryopreservation on the development and DNA methylation patterns of Arabidopsis thaliana. Life Sci. J. 6(1), 55–60.
  • Wilkinson T., Wetten A., Prychid C., Fay M.F., 2003. Suitability of cryopreservation for the long-term storage of rare and endangered plant species, a case history of Cosmos atrosanguineus. Ann. Bot. 91, 65–74.
  • Zarghami R., Pirseyedi M., Hasrak S., Pakdaman Sardrood B., 2008. Evaluation of genetic stability in cryopreserved Solanum tuberosum. Afr. J. Biotech. 7(16), 2798–2802.
  • Zeliang P.K., Pattanayak A., Iangrai B., Khongwir E.A., Sarma B.K., 2010. Fertile plant regeneration from cryopreserved calli of Oryza rufipogon Griff. And assessment of variation in the progeny of regenerated plants. Plant Cell Rep. 29, 1423–1433.
  • Zhang Z., Skjeseth G., Elameen A., Haugslien S., Sivertsen A., Clarke J.L., Wang Q.-C., Blystad D.R., 2015. Field performance evaluation and genetic integrity assessment in Argyranthemum ‘Yellow Empire’ plants recovered from cryopreserved shoot tips. In Vitro Cell. Dev. Biol. – Plant 51(5), 505–513.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8599fcb7-b808-427d-b60b-dcd57f527170
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.