PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 05 |

Tytuł artykułu

Physiological requirements for wheat ideotypes in response to drought threat

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Understanding the theoretical aspects of crops drought resistance is fundamental for maintaining the present rate of yield growth which is the key factor in the prospect of increasing world population. Achievements in plant physiology and biochemistry uncovered many metabolic pathways and defined indicators of plant resistance to environmental stresses. Genetic research contributed to discoveries of gene regulation in stress tolerance. As the result of fast development of genetics, phenomics became a hold-up of further functional research. In this paper, problems related to phenotype requirements for crops cultivation in drought threatened areas will be presented against the background of achievements in metabolomics and genomics. Theoretical speculations of Blum on crop water use efficiency will be examined against the results of Sirius simulation with HadCM3 climate projections and against practical phenological requirements for present crops.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

05

Opis fizyczny

Article: 97 [13 p.] fig.,ref.,

Twórcy

autor
  • Biochemistry and Plant Physiology Department, Plant Breeding and Acclimatization Institute IHAR-PIB, Radzikow, 05-870 Blonie, Poland
autor
  • Hodowla Roslin Strzelce Sp. z o.o. Grupa IHAR, ul.Glowna 20, 99-307 Strzelce, Poland

Bibliografia

  • Akkaya A, Dokuyucu T, Kara R, Akcura M (2006) Harmonization ratio of post- to pre-anthesis durations by thermal times for durum wheat cultivars in a Mediterranean environment. Eur J Agron 24:404–408. doi:10.1016/j.eja.2005.10.005
  • Amani I, Fischer RA, Reynolds MP (1996) Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. J Agron Crop Sci 176:119–129. doi:10.1111/j.1439-037X.1996.tb00454.x
  • Anioł A (2010) The impact of biotechnology and globalization processes on plant breeding and its R&D component (in Polish with English Summary and Legends). Biul IHAR 256:3–13. http://biblioteka.ihar.edu.pl/biuletyn_ihar.php?field[slowa_kluczowe]=&field[autor]=&id=51&idd=1089&podzial_id=1&podzial_idd=#lib
  • Anonymous (2014) Crop Modeling Team Highlights web-page http://www.agmip.org/wp-content/uploads/2012/11/Crop_Modeling_2011-2012_Highlights-web.pdf last modified 16 May 2014 05:53:53. Accessed 29 Sept 2014
  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61. doi:10.1111/j.1744-7909.2012.01116.x
  • Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn PJ, Rotter RP, Cammarano D, Brisson N, Basso B, Martre P, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Muller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stockle C, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M,WahaK, Wallach D, White JW, Williams JR, Wolf J (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Change 3:827–832. doi:10.1038/nclimate1916
  • Atkin OK, Macherel D (2009) The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot 103:58–597. doi:10.1093/aob/mcn094
  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3544. doi:10.1093/jxb/ers100
  • Bacławska-Krzemińska Z (1973) Influence of light, water deficit and age of plant on photosynthesis and air passage capacity in leaves of Brassica oleracea L. var. capitata alba v. Ditmarska. Plant Breed Seed Sci 17:303–328
  • Belko N, Zaman-Allah M, Diop NN, Cisse N, Zombre G, Ehlers JD, Vadez V (2013) Restriction of transpiration rate under high vapour pressure deficit and non-limiting water conditions is important for terminal drought tolerance in cowpea. Plant Biol 15:304–316. doi:10.1111/j.1438-8677.2012.00642.x
  • Bhatnagar-Mathur P, Vadez V, Sharma K (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424. doi:10.1007/s00299-007-0474-9
  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res 112:119–123. doi:10.1016/j.fcr. 2009.03.009
  • Blum A (2011a) Drought resistance—is it really a complex trait? Funct Plant Biol 38:753–757. doi:10.1071/FP11101
  • Blum A (2011b) Plant breeding for water-limited environments. Springer, New York
  • Blum A, Mayer J, Gozlan G (1982) Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat. Field Crops Res 5:137–146. doi:10.1016/0378-4290(82)90014-4
  • Borlaug N (2007) Sixty-two years of fighting hunger: personal recollections. Euphytica 157:287–297. doi:10.1007/s10681-007-9480-9
  • Brooks RJ, Semenov MA, Jamieson PD (2001) Simplifying Sirius: sensitivity analysis and development of a meta-model for wheat yield prediction. Eur J Agron 14:43–60. doi:10.1016/S1161-0301(00)00089-7
  • Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Araus JL (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54:312–320. doi:10.1111/j.1744-7909.2012.01116.x
  • Caramelo JJ, Iusem ND (2009) When cells lose water: lessons from biophysics and molecular biology. Prog Biophys Mol Biol 99:1–6. doi:10.1016/j.pbiomolbio.2008.10.001
  • Chern C-G, Fan M-J, Huang S-C, Yu S-M, Wei F-J, Wu C-C, Trisiriroj A, Lai M-H, Chen S, Hsing Y-I (2011) Methods for rice phenomics studies. In: Pereira A (ed) Plant reverse genetics, vol 678. Springer, pp 129–138. http://www.google.com/url sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB4QFjAA &url=http%3A%2F%2Fwww.researchgate.net%2Fprofile%2FY ue-ie_Hsing%2Fpublication %2F47371368_Methods_for_rice_ phenomics_studies%2Flinks%2F0a85e5366f2f99023a000000. pdf&ei=C5syVabYO8HasgHplILACg&usg=AFQjCNHdukUdN GhXgdl-2bY0mTPZGMJTqQ&bvm=bv.91071109,d.bGg
  • Christopher JT, Manschadi AM, Hammer GL, Borrell AK (2008) Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Aust J Agric Res 59:354–364. doi:10.1071/AR07193
  • Claeys H, Van Landeghem S, Dubois M, Maleux K, Inzé D(2014) What is stress? Dose-response effects in commonly used in vitro stress assays. Plant Physiol 165:519–527. doi:10.1104/pp.113.234641
  • Comstock JP (2002) Hydraulic and chemical signaling in the control of stomatal conductance and transpiration. J Exp Bot 53:195–200. doi:10.1093/jexbot/53.367.195
  • Costa JM, Grant OM, Chaves MM (2013) Thermography to explore plant—environment interactions. J Exp Bot 64:3937–3949. doi:10.1093/jxb/ert029
  • Craufurd PQ, Vadez V, Jagadish SVK, Prasad PVV, Zaman-Allah M (2013) Crop science experiments designed to inform crop modelling. Agric For Meteorol 170:8–18. doi:10.1016/j.agrfor met.2011.09.003
  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679. doi:10.1146/annurev-arplant-042809-112122
  • Doroszewski A, Jadczyszyn J, Kozyra J, Pudełko R, Stuczyński T, Mizak K, Łopatka A, Koza P, Górski T, Wróblewska E (2012) Fundamentals of the agricultural drought monitoring system. Woda-Środowisko-Obszary Wiejskie 12: 77–91 (in Polish with English Summary). http://www.itp.edu.pl/oferta/wydawnictwo/woda/zeszyt_38_2012/artykuly/Doroszewski%20i%20in.pdf
  • Driever SM, Lawson T, Andralojc PJ, Raines CA, Parry MAJ (2014) Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. J Exp Bot 65:4959–4973.doi:10.1093/jxb/eru253
  • Du T, Kang S, Sun J, Zhang X, Zhang J (2009) An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agric Water Manag 97:66–74. doi:10.1016/j.agwat.2009.08.011
  • Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev V, Plummer N, Jamason P, Folland CK (1997) Maximum and minimum temperature trends for the globe. Science 277:364–367. doi:10.1126/science.277.5324.364
  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425. doi:10.1175/1520-0477(2000)081!0417
  • Eyal Z, Blum A (1989) Canopy temperature as a correlative measure for asscessing host response to Septoria tritici bloch of wheat. Plant Dis 73:468–471. doi:10.1094/PD-73-0468
  • FAO, Food and Agriculture Organization (2003) Review of world water resources by country. Water reports vol 23. FAO, Rome. ISBN 92-5-104899-1. http://www.fao.org/docrep/005/y4473e/y4473e00.HTM
  • Feng B, Yu H, Hu Y, Gao X, Gao J, Gao D, Zhang S (2009) The physiological characteristics of the low canopy temperature wheat (Triticum aestivum L.) genotypes under simulated drought condition. Acta Physiol Plant 31:1229–1235. doi:10.1007/s11738-009-0358-4
  • Fischer RA, Rees D, Sayre KD, Lu Z-M, Condon AG, Saavedra AL (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475. doi:10.2135/cropsci1998.0011183X003800060011x
  • Fish DA, Earl HJ (2009) Water-use efficiency is negatively correlated with leaf epidermal conductance in cotton (Gossypium spp.). Crop Sci 49:1409–1415.doi:10.2135/cropsci2008.08.0490
  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222. doi:10.1093/jxb/erq152
  • Foyer C, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905. doi:10.1089/ars.2008.2177
  • Gago J, Douthe C, Florez-Sarasa I, Escalona JM, Galmes J, Fernie AR, Flexas J, Medrano H (2014) Opportunities for improving leaf water use efficiency under climate change conditions. Plant Sci 226:108–119. doi:10.1016/j.plantsci.2014.04.007
  • Gassman PW, Williams JR, Benson VW, Izaurralde RC, Hauck LM, Jones CA, Atwood JD, Kiniry JR, Flowers JD (2004) Historical development and applications of the EPIC and APEX models. ASAE/CSAE Annual International Meeting Ottawa, Canada. Meeting Paper No. 042097. http://www.card.iastate.edu/publications/synopsis.aspx?id=763
  • Gewin V (2010) Food: an underground revolution. Nature 466:552–553. doi:10.1038/466552a GUS, Główny Urząd Statystyczny (2013) Produkcja Upraw Rolniczych i Ogrodniczych w 2012 r. Materiały źródłowe. ISSN 1509–7099. http://stat.gov.pl/cps/rde/xbcr/gus/RL_produkcja_upraw_roln_i_ogrod_w_2012.pdf
  • Gnyp ML, Bareth G, Li F, Lenz-Wiedemann VIS, Koppe W, Miao Y, Hennig SD, Jia L, Laudien R, Chen X, Zhang F (2014) Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain. Int J Appl Earth Observ Geoinf 33:232–242. doi:10.1016/j.jag.2014.05.006
  • Gosal SS,Wani SH, Kang MS(2009) Biotechnology and drought tolerance. J Crop Improv 23:19–54. doi:10.1080/15427520802418251
  • Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauzat M, Hamard P, Thioux J-J, Rolland G, Bouchier-Combaud S, Lebaudy A, Muller B, Simonneau T, Tardieu F (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169:623–635. doi:10.1111/j.1469-8137.2005.01609.x
  • Grudkowska M, Zagdańska B (2004) Multifunctional role of plant cysteine proteinases. Acta Biochim Pol 51:609–624
  • Hammer G, Chapman S, Ev Oosterom, Podlich D (2004) Trait physiology and crop modelling to link phenotypic complexity to underlying genetic systems. Aust J Agric Res 56:947–960. doi:10.1071/AR05157
  • Hammer GL, van Oosterom E, McLean G, Chapman SC, Broad I, Harland P, Muchow RC (2010) Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J Exp Bot 61:2185–2202. doi:10.1093/jxb/erq095
  • Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271. doi:10.1104/pp.110.161752
  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–865. doi:10.1038/nrg2897
  • Hu H, Xiong L (2014) Genetic engineering and breeding of droughtresistant crops. Ann Rev Plant Biol 65:715–741. doi:10.1146/ annurev-arplant-050213-040000
  • Hussain SS, Iqbal MT, Arif MA, Amjad M (2011) Beyond osmolytes and transcription factors: drought tolerance in plants via protective proteins and aquaporins. Biol Plant 55:401–413. doi:10.1007/s10535-011-0091-x
  • Iturriaga G (2008) The LEA proteins and trehalose loving couple: a step forward in anhydrobiotic engineering. Biochem J 410:e1–e2. doi:10.1042/BJ20071633
  • Iturriaga G, Suárez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 10:3793–3810. doi:10.3390/ijms10093793
  • Izanloo A, Condon AG, Langridge P, Tester M, Schnurbusch T (2008) Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J Exp Bot 59:3327–3346. doi:10.1093/jxb/ern199
  • Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Philos T R Soc B 365:2835–2851. doi:10.1098/rstb.2010.0153
  • Jaleel CA, Manivannan P, Wahid A, Farooq R, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105
  • Jamieson PD, Semenov M, Brooking I, Fracois G (1998) Sirius: a mechanistic model of wheat response to environmental variation. Eur J Agron 8:161–179. http://www.sciencedirect.com/science/article/pii/S1161030100000897
  • Jogaiah S, Govind SR, Tran LSP (2013) Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol 33:23–39. doi:10.3109/07388551. 2012.659174
  • Jordan DR, Tao Y, Godwin ID, Henzell RG, Cooper M, McIntyre CL (2003) Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genet 106:559–567. doi:10.1007/s00122-012-1905-8
  • Kacperska A (2002) Reakcje ros´lin na abiotyczne czynniki stresowe. In: Kopcewicz J, Lewak S (eds) Fizjologia roślin, 2nd edn. PWN, Warszawa, pp 612–678. ISBN 83-01-13753-3
  • Kemanian AR, Stöckle CO, Huggins DR (2005) Transpiration-use efficiency of barley. Agr Forest Meteorol 130:1–11. doi:10.1016/j.agrformet.2005.01.003
  • Khattak GSS, Parry MAJ, Andralojc J, Saeed I, Shams Ur R (2014) Evaluation of diverse wheat genotypes for potential biomass production through physiological parameters at seedling stage under controlled environment. Pak J Bot 46:181–184. https://inis.iaea.org/search/search.aspx?orig_q=RN:45109105
  • Kholová J, Hash CT, Kakkera A, Kocova M, Vadez V (2010a) Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet (Pennisetum glaucum L.). J Exp Bot 61:369–377. doi:10.1093/jxb/erp314
  • Kholová J, Hash CT, Kumar PL, Yadav RS, Kocova M, Vadez V (2010b) Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit. J Exp Bot 61:1431–1440. doi:10. 1093/jxb/erq013
  • Kholová J, McLean G, Vadez V, Craufurd P, Hammer GL (2013) Drought stress characterization of post-rainy season (rabi) sorghum in India. Field Crops Res 141:38–46. doi:10.1016/j. fcr.2012.10.020
  • Kholová J, Murugesan T, Kaliamoorthy S, Malayee S, Baddam R, Hammer GL, McLean G, Deshpande S, Hash CT, Craufurd PQ, Vadez V (2014) Modelling the effect of plant water use traits on yield and stay-green expression in sorghum. Funct Plant Biol41:1019–1034. doi:10.1071/FP13355
  • Kirkegaard JA, Lilley JM, Howe GN, Graham JM (2007) Impact of subsoil water use on wheat yield. Aust J Agric Res 58:303–315. doi:10.1071/AR06285
  • Knight S, Kightley S, BinghamI, Hoad S, Lang B, Philpott H, Stobart R, Thomas J, Barnes A, Ball B (2012) Desk study to evaluate contributory causes of the current ‘yield plateau’ in wheat and oilseed rape.HGCAReportNo502: p 225. http://archive.hgca.com/document.aspx?fn=load&media_id=8278&publicationId=9165
  • Koza JR, Keane MA, Streeter MJ (2003) Zastosowanie mechanizmów ewolucji w programowaniu komputerowym daje nowatorskie rezultaty. Świat Nauki 4(140):40–47
  • Łabędzki L (2006) Susze rolnicze. Zarys problematyki oraz metody monitorowania i klasyfikacji. Woda Środowisko Obszary Wiejskie 17: monografia
  • Labudda M, Azam FMS (2014) Glutathione-dependent responses of plants to drought: a review. Acta Soc Bot Pol 83:3–12
  • Levitt J (1972) Drought avoidance (Chapter 14). In: Levitt J (ed) Responses of plants to environmental stresses. Academic Press, New York, pp 353–378
  • Liu Z-Y, Wu H-F, Huang J-F (2010) Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis. Comput Electron Agric 72:99–106. doi:10.1016/j.compag.2010. 03.003
  • Lobell DB, Tebaldi C (2014) Getting caught with our plants down: The risks of a global crop yield slowdown from climate trends in the next two decades. Environ Res Lett 9 (p 9). doi:10.1088/1748-9326/9/7/074003
  • Lopes MS, Rebetzke GJ, Reynolds M (2014) Integration of phenotyping and genetic platforms for a better understanding of wheat performance under drought. J Exp Bot: first published online 22 Sept 2014. doi:10.1093/jxb/eru384
  • Lu ZM, Radin JW, Turcotte EL, Percy R, Zeiger E (1994) High yields in advanced lines of pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature. Physiol Plant 92:266–272
  • Mackay I, Horwell A, Garner J, White J, McKee J, Philpott H (2011) Re-analyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor Appl Gen 122:225–238. doi:10.1007/s00122-010-1438-y
  • Manschadi AM, Christopher J, Devoil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to waterlimited environments. Funct Plant Biol 33:823–837. doi:10.1071/FP06055
  • Marcińska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak M, Janowiak F, Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie S (2013) Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiol Plant 35:451–461. doi:10.1007/s11738-012-1088-6
  • Maseda PH, Ferniez RJ (2006) Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J Exp Bot 57:3963–3977. doi:10.1093/jxb/erl127
  • McMaster GS (2005) Phytomers, phyllochrons, phenology and temperate cereal development. J Agric Sci 143:137–150. doi:10.1017/S0021859605005083
  • Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383
  • Messina CD, Podlich D, Dong Z, Samples M, Cooper M (2011) Yield—trait performance landscapes: from theory to application in breeding maize for drought tolerance. J Exp Bot 62:855–868. doi:10.1093/jxb/erq329
  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467. doi:10.1111/j.1365-3040.2009.02041.x
  • Mott KA (2007) Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves. Plant Cell Environ 30:1444–1449. doi:10.1111/j.1365-3040.2007.01720.x
  • Oleksiak T (2013) The use of certified seed and the yield of winter cereals (in Polish with English Summary and Legends). Biul IHAR 268:87–99. http://biblioteka.ihar.edu.pl/biuletyn_ihar.php?id=62&field[autor]=Oleksiak&field[slowa_kluczowe]=&podzial_id=#lib
  • Pantin F, Monnet F, Jannaud D, Costa JM, Renaud J, Muller B, Simonneau T, Genty B (2013) The dual effect of abscisic acid on stomata. New Phytol 197:65–72. doi:10.1111/nph.12013
  • Passioura JB (1996) Simulation models: science, snake oil, education, or engineering? Agron J 88:690–694. doi:10.2134/agronj1996.00021962008800050002x
  • Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851–859. doi:10.1071/FP12079
  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882. doi:10.1093/jxb/erq340
  • Pinter PJ Jr, Zipoli G, Reginato RJ, Jackson RD, Idso SB, Hohman JP(1990) Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agric Water Manage 18:35–48. doi:10.1016/0378-3774(90)90034-V
  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos Trans R Soc B 360:2021–2035. doi:10.1098/rstb.2005. 1752
  • Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol 11:171–179. doi:10.1016/j.pbi.2008.02.005
  • Richards RA (2006) Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric Water Manage 80:197–211. doi:10.1016/j.agwat.2005.07.013
  • Richards RA, Rebetzke GJ, Watt M, Condon AG, Spielmeyer W, Dolferus R (2010) Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct Plant Biol 37:85–97. doi:10.1071/FP09219
  • Ritchie JT, Singh U, Godwin DC, Bowen WT (1998) Soil water balance and plant water stress. In: Tsuji Y, Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production. Kluwer Academic Publishers, Dordrecht, pp 83–102. ISBN 0-7923-4833-8
  • Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn P, Antle JM, Nelson GC, Porter C, Janssen S, Asseng S, Basso B, Ewert F, Wallach D, Baigorria G, Winter JM (2013) The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agric For Meteorol 170:166–182. doi:10.1016/j.agrformet.2012.09.011
  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Nat Acad Sci USA 111:3268–3273. doi:10.1073/pnas.1222463110
  • Rybka K (2011) Tilling and fox-hunting: new methods for functional analysis of genes. Adv Cell Biol 3(1):165–180. doi:10.2478/v10052-011-0001-6
  • Schoppach R, Sadok W (2012) Differential sensitivities of transpiration to evaporative demand and soil water deficit among wheat elite cultivars indicate different strategies for drought tolerance. Environ Exp Bot 84:1–10. doi:10.1016/j.envexpbot.2012.04.016
  • Semenov MA, Stratonovitch P (2013) Designing high-yielding wheat ideotypes for a changing climate. Food Energy Secur 2:185–196. doi:10.1002/fes3.34
  • Semenov MA, Stratonovitch P, Alghabari F, Gooding MJ (2014) Adapting wheat in Europe for climate change. J Cereal Sci 59:245–256. doi:10.1016/j.jcs.2014.01.006
  • Shimshi D, Ephrat J (1975) Stomatal behavior of wheat cultivars in relation to their transpiration, photosynthesis and yield. Agron J 67:326–331. doi:10.2134/agronj1975.00021962006700030011x
  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227. doi:10.1093/jxb/erl164
  • Sillmann J, Roeckner E (2008) Indices for extreme events in projections of anthropogenic climate change. Clim Change 86:83–104. doi:10.1007/s10584-007-9308-6
  • Starck Z (2009) Dystrybucja asymilato´w kluczowym procesem determinuja˛cym plon. Post Nauk Roln 2(2009):51–69
  • Strebeyko P (1973) Theoretical principles of gas exchange in plants. Plant Breed Seed Sci 17:287–295
  • Tallec T, Béziat P, Jarosz N, Rivalland V, Ceschia E (2013) Crops’water use efficiencies in temperate climate: comparison of stand, ecosystem and agronomical approaches. Agric For Meteorol 168:69–81. doi:10.1016/j.agrformet.2012.07.008
  • Tardieu F (2010) Why work and discuss the basic principles of plant modelling 50 years after the first plant models? J Exp Bot 61:2039–2041. doi:10.1093/jxb/erq135
  • Tardieu F (2012) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J Exp Bot 63:25–31. doi:10.1093/jxb/err269
  • Thakur A (1991) Model: mechanistc vs. empirical. In: Rescigno A, Thakur A (eds) New trends in pharmacokinetics. Plenum Press, New York, pp 41–51
  • Tomassini L, Jacob D (2009) Spatial analysis of trends in extreme precipitation events in high-resolution climate model results and observations for Germany. J Geophys Res Atmos 114:D12113. doi:10.1029/2008jd010652
  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217. doi:10.1175/bams-84-9-1205
  • Vadez V, Rao S, Kholová J, Krishnamurthy L, Kashiwagi J, Ratnakumar P, Sharma K, Bhatnagar-Mathur P, Basu P (2008) Root research for drought tolerance in legumes: Quo vadis? J Food Legumes 21:77–85
  • Vadez V, Kholová J, Yadav R, Hash C (2013a) Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum L.) are critical for grain yield under terminal drought. Plant Soil 371:447–462. doi:10.1007/s11104-013-1706-0
  • Vadez V, Kholová J, Zaman-Allah M, Belko N (2013b) Water: the most important ‘molecular’ component of water stress tolerance research. Funct Plant Biol 40:1310–1322. doi:10.1071/FP13149
  • Vadez V, Rao JS, Bhatnagar-Mathur P, Sharma KK (2013c) DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut. Plant Biol 15:45–52. doi:10.1111/j.1438-8677.2012.00588.x
  • Vadez V, Kholová J, Medina S, Kakkera A, Anderberg H (2014) Transpiration efficiency: new insights into an old story. J Exp Bot 65:6141–6153. http://jxb.oxfordjournals.org/content/65/21/6141
  • Wasson AP, Richards RA, Chatrath R, Misra SC, Prasad SVS, Rebetzke GJ, Kirkegaard JA, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498. doi:10.1093/jxb/ers111
  • White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley MM, Feldmann KA, French AN, Heun JT, Hunsaker DJ, Jenks MA, Kimball BA, Roth RL, Strand RJ, Thorp KR, Wall GW, Wang G (2012) Field-based phenomics for plant genetics research. Field Crop Res 133:101–112. doi:10.1016/j.fcr.2012. 04.003
  • Wolf J, Evans L, Semenov M, Eckersten H, Iglesias A (1996) Comparison of wheat simulation models under climate change I. Model calibration and sensitivity analyses. Clim Res 7:253–279. doi:10.3354/cr007253
  • Yang W, Duan L, Chen G, Xiong L, Liu Q (2013) Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol 16:180–187. doi:10.1016/j.pbi.2013.03.005
  • Yonekura-Sakakibara K, Fukushima A, Saito K (2013) Transcriptome data modeling for targeted plant metabolic engineering. Curr Opin Biotechnol 24:285–290. doi:10.1016/j.copbio.2012.10.018
  • Zagdańska B (1997) Mechanizmy odporności zbóż na susze˛ glebowa˛: metabolizm energetyczny pszenicy jarej w nabywaniu odporności. (in Polish with English Summary and Legends) Biul IHAR 203:41–55. doi:10.5586/asbp.1994.010
  • Zagdańska B, Kozdój J (1994) Water stress-induced changes in morphology and anatomy of flag leaf of spring wheat. Acta Soc Bot Pol 63:61–66. http://pbsociety.org.pl/journals/index.php/asbp/article/view/asbp.1994.010
  • Zaman-Allah M, Jenkinson D, Vadez V (2011) Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Funct Plant Biol 38:270–281. doi:10.1071/FP10244
  • Zhang J, Dell B, Conocono E, Waters I, Setter T, Appels R (2009) Water deficits in wheat: fructan exohydrolase (1-FEH)mRNA expression and relationship to soluble carbohydrate concentrations in two varieties. New Phytol 181:843–850. doi:10.1111/j. 1469-8137.2008.02713.x
  • Zhou J, Wang J, Li X, Xia X-J, Zhou Y-H, Shi K, Chen Z, Yu J-Q (2014) H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. J Exp Bot 65:4371–4383. doi:10.1093/jxb/eru217 Z_ urek G (2004) The effect of natural and simulated drought on selected turf grass varieties. Biul IHAR 233:195–209 (in Polish with English Summary and Legends). http://biblioteka.ihar.edu.pl/biuletyn_ihar.php?field[slowa_kluczowe]=&field[autor]=&id=28&idd=241&podzial_id=2&podzial_idd=

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8574c3db-1f4c-42cc-91d1-c865cca8f225
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.