PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 160 | 06 |

Tytuł artykułu

Wpływ metodyki badań na ocenę struktury zbiorowisk mikroorganizmów w glebie leśnej

Treść / Zawartość

Warianty tytułu

EN
Effect of the methodology of studies on the structure of the microorganisms communities in the forest soil

Języki publikacji

PL

Abstrakty

EN
Two different communities of microorganisms were identified in soils by application of the classical method of fungi isolation (soil dilution, culturing on artificial media, morphotyping) and a molecular method (extraction of the environmental DNA, amplification with universal primers NS1 and NS2, cloning and sequencing of representative clones). No organisms were common to both communities. Apart from rare representatives of the Animalia, communities included single fungus−like Eucarya belonging to the Protista, Class Oomycota, and numerous fungi belonging to Chytridiomycota, Zygomycota, Ascomycota and Basidiomycota orders. In total, 88 species were identified in four soil samples. Fungi were mostly Ascomycota. The classical method was particularly effective in detection of fungi important for creation of phytosanitary conditions of soil, i.e. antagonists (Penicillium, Tolypocladium and Trichoderma) and potential stimulants (dark−pigmented Hormiactis candida, Humicola spp. and Phialophora spp.) of phytopathogens (including the common forest genera Armillaria and Heterobasidion). Application of the classical method allowed the detection of mycorrhizal Ascomycota from the genus Oidiodendron. Application of the molecular method allowed the detection of 13 mycorrhizal Basidiomycota. Although primers NS1 and NS2 were designed from a match with DNA of culturable organisms, they also amplified the DNA of non−culturable organisms. This emphasizes their potential usefulness in studies of the biodiversity of microorganisms in environmental samples. The shortage of reference sequences in the database discourages use of the 18S rDNA region in studies on fungal communities. The studies on the biodiversity of microorganisms need the application of a few independent methods of detection and identification.

Wydawca

-

Czasopismo

Rocznik

Tom

160

Numer

06

Opis fizyczny

s.492-503,tab.,bibliogr.

Twórcy

  • Katedra Fitopatologii Leśnej, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 71c, 60-625 Poznań
autor
  • Katedra Fitopatologii Leśnej, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 71c, 60-625 Poznań

Bibliografia

  • Anderson I. C., Cairney J. W. G. 2004. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environmental Microbiology 6: 769-779.
  • Anderson I. C., Campbell C. D., Prosser J. I. 2003. Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environmental Microbiology 5 (1): 36-47.
  • Anderson T. H. 1998. The influence of acid irrigation and liming on the soil microbial biomass in a Norway spruce (Picea abies (L.) K.) stand. Plant and Soil 199: 117-122.
  • Bĺĺth E., Anderson T. H. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology & Biochemistry 35: 995-963.
  • Badura L. 2002. Mikroorganizmy w ekosystemach lądowych. Aktywność drobnoustrojów w różnych środowiskach. Katedra Mikrobiologii AR Kraków.
  • Behnke-Borowczyk J., Kwaśna H. 2010. Grzyby glebowe i ich znaczenie. Sylwan 154 (12): 846-850.
  • Behnke-Borowczyk J., Kwaśna H., Bełka M. 2012. Metody molekularne stosowane w badaniu różnorodności mikroorganizmów glebowych. Sylwan 156 (4): 294-304.
  • Bertini L., Amicucci A., Agostini D., Polidori E., Potenza L., Guidi Ch., Stocchi V. 1999. A new pair of primers designed for amplification of the ITS region in Tuber species. FEMS Microbiology Letters 173 (1): 239-245.
  • Christensen M. 1989. A view of fungal ecology. Mycologia 81: 1-19.
  • Collins H. P., Rasmussen P. E., Douglas C. L. Jr. 1992. Crop rotation and residue management effects on soil carbon and microbial dynamics. Soil Science Society of America Journal 56: 783-788.
  • Domsch K. H., Gams W., Anderson T. H. 1980. Compendium of soil fungi. London, New York, Toronto, Sydney, San Francisco: Academic Press: 1-892.
  • Doran J. W. 1980. Soil microbial and biochemical changes associated with reduced tillage. Soil Science Society of American Journal 44: 765-771.
  • Dumas M. T., Boyonoski N. W. 1992. Scanning electron microscopy of mycoparasitism of Armillaria rhizomorphs by species of Trichoderma. European Journal of Forest Pathology 22: 379-383.
  • Filion M., Hamelin R. C., Bernier L., St-Arnau M. 2004. Molecular Profiling of Rhizosphere Microbial Communities Associated with Healthy and Diseased Black Spruce (Picea mariana) Seedlings Grown in a Nursery. Applied and Environmental Microbiology. 70 (6): 3541-3551.
  • Fils S. E., Glenn A. R., Dilworth M. J. 1993. The interaction between aluminium and root nodule bacteria. Soli Biology & Biochemistry 25: 403-417.
  • Fox R. T. V., Mc Que A. M., West J. S., Raziq F. 1994. Use of antagonistic fungi to control Armillaria root rot. Brighton Crop Protection Conference. Pests Disease 3: 1115-1120.
  • Galus-Barchan A., Paśmionka I. 2014. Występowanie wybranych mikroorganizmów w glebie na obszarze Puszczy Niepołomickiej ze szczególnym uwzględnieniem grzybów pleśniowych. Polish Journal of Agronomy 17: 11-17.
  • Grelet G. A., Meharg A. A., Alexander I. J. 2005. Carbon availability affects nitrogen source utilization by Hymenoscyphus ericae. Mycological Research 109: 469-477.
  • Hagn A., Pritsch K., Ludwig W., Schloter M. 2003. Theoretical and Practical Approaches to Evaluate Suitable Primer Sets for the Analysis of Soil Fungal Communities. Acta Biotechnologica 23 (4): 373-381.
  • Harman G. E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96: 190-194.
  • Highley T. L. 1997. Control of wood decay by Trichoderma (Gliocladium) virens. I. Antagonistic properties. Material und Organismen 3: 7989.
  • Hunt J., Boddy L., Randerson P. F., Rogers H. J. 2004. An evaluation of 18S rDNA approaches for the study of fungal diversity in grassland soils. Microbial Ecology 47: 385-395.
  • Hyppel A. 1968. Studier over rötangrepp i särskador hos gran. Summary: Studies on decay in scars of Norway spruce. Sveriges Skogsv. Förb.Tidskrift 168: 675-713.
  • Klich M. A., Pitt J. I. 1992. A laboratory guide to the common Aspergillus species and their teleomorphs. Commonwealth Scientific and Industrial Research Organisation, Division of Food Processing, North Ryde, New South Wales, Australia.
  • Kwaśna H. 1995. Fungal communities in soil beneath Scots pine and their stumps. Effect of fungi on Heterobasidion annosum and Armillaria ostoyae growth. Acta Mycologica 30: 193-205.
  • Kwaśna H. 1997a. Antagonistic effect of fungi communities from Scots pine fine roots on Heterobasidion annosum (Fr.) and Armillaria ostoyae (Romagn.) Herink growth. Phytopathologia Polonica 13: 133-146.
  • Kwaśna H. 1997b. Antagonistic effect of fungi from Scots pine stump roots on Heterobasidion annosum and Armillaria ostoyae. Acta Mycologica 32: 369-381.
  • Kwaśna H. 2014. Mikrobiologia rolnicza. Uniwersytet Przyrodniczy w Poznaniu.
  • Kwaśna H., Bateman G. L. 2009. Microbial communities in roots of Pinus sylvestris seedlings with damping-off symptoms in two forest nurseries as determined by ITS1/2 rDNA sequencing. Forest Pathology 39 (4): 239-248.
  • Kwaśna H., Bateman G. L., Ward E. 2008. Determining species diversity of microfungal communities in forest tree roots by pure-culture isolation and DNA sequencing. Applied Soil Ecology 40: 44-56.
  • Kwaśna H., Ward E., Bateman G. L. 2006. Phylogenetic relationships among Zygomycetes from soil based on ITS1/2 rDNA sequences. Mycological Research 110: 501-510.
  • Lundgren B., Bĺĺth E., Söderström B. E. 1978. Antagonistic effect of Tolypocladium species. Transactions of British Mycological Society 70: 305-307.
  • Lundquist E. J., Scow K. M., Jackson L. E., Uesugi S. L., Johnson C. R. 1999. Rapid response of soil microbial communities from conventional, low input, and organic farming system to wet/dry cycle. Soil Biology & Biochemistry 31: 1661-1675.
  • Mańka K. 1964. Próby dalszego udoskonalenia zmodyfikowanej metody Warcupa izolowania grzybów z gleby. Prace Komisji Nauk Rolniczych i Leśnych PTPN 17: 29-43.
  • Mańka K. 1974. Zbiorowiska grzybów jako kryterium oceny wpływu środowiska na choroby roślin. Zeszyty Proble-mowe Postępów Nauk Rolniczych 160: 9-23.
  • Mańka K. 1976. Nowa mikrobiologiczna metoda badania środowiska leśnego. Folia Forestalia Polonica A 22: 39-48.
  • Mańka K. 1978. Środowisko a odporność roślin na choroby. Zeszyty Problemowe Postępów Nauk Rolniczych 198: 33-41.
  • Mańka K. 1988. Wpływ środowiska na choroby roślin. Roczniki Nauk Rolniczych E 18: 9-16.
  • Mańka M., Tyszkiewicz Z., Stępniewska-Jarosz S. 2006. Soil fungi communities effect on the growth of Heterobasidion annosum versus forest environment pollution. Phytopathologia Polonica 40: 43-56.
  • Marstorp H., Guan X., Gong P. 2000. Relationship between dsDNA, chloroform labile C and ergosterol in soil of different organic matter contents and pH. Soil Biology & Biochemistry 32: 879-882.
  • Martino E., Murat C., Vallino M., Bena A., Perotto S., Spanu P. 2007. Imaging mycorrhizal fungal transformants that express EGFP during ericoid endosymbiosis. Current Genetics 52: 65-75.
  • Martyn W., Skwaryło-Bednarz B. 2005. Właściwości biologiczne gleb lekkich występujących w rejonie Roztoczań-skiego Parku Narodowego. Acta Agrophysica 5 (3): 695-704.
  • Menkis A., Vasiliauskas R., Taylor A. F. S., Stenström E., Stenlid J., Finlay R. 2006. Fungi in decayed roots of conifer seedlings in forest nurseries, afforested clear-cuts and abandoned farmland. Plant Pathology 55: 117-129.
  • Münzenberger B., Bubner B., Wöllecke J., Sieber T. N., Bauer R., Flading M., Hüttl R. F. 2009. The ectomycorrhizal morphotype Pinirhiza sclerotia is formed by Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii. Mycorrhiza 7: 481-492.
  • Nelson E. E., Pearce N. H., Malajczuk N. 1989. Competitive colonization of karri (Eucalyptus diversicolor) stem sections by Armillaria luteobubalina and Trichoderma spp. Proceedings of 7th International Conference on Root and Butt Rots of Forest Trees. 79-83.
  • Nicklin J., Graeme-Cook K., Paget T., Killington R. 2002. Mikrobiologia. Krótkie wykłady. PWN, Warszawa.
  • Niewolak S., Brzozowska R., Czechowska K., Filipkowska Z., Korzeniewska E. 2007. Sezonowe zmiany liczebności promieniowców i grzybów (nitkowatych i drożdżoidalnych) w wodzie, glebie i roślinności śródleśnych mokradeł w okolicy Olsztyna. Woda-Środowisko-Obszary Wiejskie 7 (2a): 271-291.
  • Onsando J. M., Waudo S. W. 1994. Interaction between Trichoderma species and Armillaria root rot fungus of tea in Kenya. International Journal of Pest Management 40: 69-74.
  • Pitt J. 1979. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, New York.
  • Reaves J. L., Shaw C. G., Mayfield J. E. 1990. The effects of Trichoderma spp. isolated from burned and non-burned forest soils on the growth and development of Armillaria ostoyae in culture. Northwest Science 64: 39-44.
  • Saito K., Nishida K. M., Mori T., Kawamura Y., Miyoshi K., Nagami T., Siomi H., Siomi M. C. 2006. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes 20: 2214-2222.
  • Sierota Z. 1976. Influence of acidity on the growth of Trichoderma viride Pers. ex Fr. and on the inhibitory effect of its filtrates against Fomes annosus (Fr.) Cke in artificial cultures. European Journal of Plant Pathology 5: 302-311.
  • Sierota Z., Kwaśna H. 1999. Ocena mikologiczna zmian zachodzących w glebie gruntu porolnego po dodaniu trocin iglastych. Sylwan 143 (4): 57-66.
  • Singh P., Raghukumar Ch.,Verma P., Shouche Y. 2012. Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World Journal of Microbiology and Biotechnology 28: 659-667.
  • Szwajkowska-Michałek L., Kwaśna H., Łakomy P., Perkowski J. 2012. Inhibition of Armillaria and Heterobasidion growth by Penicillium adametzii isolated from Pinus sylvestris forest soil. Forest Pathology 42: 454-466.
  • Viaud M., Pasquier A., Brygoo Y. 2000. Diversity of soil fungi studied by PCR-RFLP of ITS. Mycological Research104: 1027-1032.
  • Warcup J. H. 1950. The soil-plate method for isolation of fungi from soil. Nature 166: 117-118.
  • Warcup J. H. 1955. Isolation of fungi from hyphae present in soil. Nature 175: 953-954.
  • Watanabe K., Kodama Y., Harayama S. 2001. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. Journal of Microbiological Methods 44: 253-262.
  • Whipps J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52 (suppl. 1): 487-511.
  • White T. J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. W: Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. [red.]. PCR protocols: a guide to methods and applications. Academic Press, Inc., San Diego, California. 315-322.
  • Xiao G., Berch S. M. 1995. The ability of known ericoid mycorrhizal fungi to form mycorrhizae with Gaultheria shallon. Mycologia 87: 467-470.
  • Zelles L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biology and Fertility of Soils 29: 111-129.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8433ff60-e233-42ef-b286-ad841753582c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.