Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 3 |
Tytuł artykułu

Changes of willow biomass quality as renewable energy feedstock harvested with biobaler

Treść / Zawartość
Warianty tytułu
Języki publikacji
Willow biomass can be collected in the form of entire or chipped shoots. The method depends on the harvest cycle of the plants, availability of necessary machines and the expected use of harvested raw material. Methods of harvesting influence on biomass quality during its acquisition and further in the storage period. Therefore, the aim of the research was to characterize the harvest of willow plantation with the use of a biobaler WB 55 and to assess the quality of the obtained biomass during the 9-month period of its storage. Willow was harvested with biobaler WB 55 in January 2010 on a commercial plantation. The 3.5 ha plantation was situated in the north-east of Poland, in the village of Dorotowo (53°42′9.88″ N 20°25′11.02″ E). An analysis of the biomass quality in terms of its thermophysical and chemical properties was carried out at the laboratory of the Department of Plant Breeding and Seed Production of the UWM in Olsztyn. Willow harvesting with a unit consisting of a 129 kW tractor and biobaler WB 55 was conducted efficiently. The average harvesting efficiency was about 18 bales per hour of the unit operation (8.75 Mg h-1 FM). The fresh matter density in the bales averaged 358.10 kg m-3 FM, whereas in dry matter it was 166.16 kg m-3 DM. With extended duration of storage, the quality of willow biomass as an energy raw material improved. The biomass in the bales steadily lost its moisture, from 53.06% in January to 17.48% in September. On the other hand, the lower heating value increased during that same period from 7.75 MJ kg-1 to 15.65 MJ kg-1. It has been found based on the observations made during the study period that the advantages of a biobaler WB 55 are the easy and efficient harvesting of plants on a plantation and bales can be used for energy production as needed.
Opis fizyczny
  • Chair of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland
  • Chair of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
  • Chair of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
  • Chair of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
  • Chair of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
  • Buchholz T., Volk T. 2013. Profitability of willow biomass crops affected by incentive programs. BioEnergy Res., 6(1): 53-64.
  • Bullard M.J., Mustill S.J., Carver P., Nixon P. M. I. 2002. Yield improvements through modification of planting density and harvest frequency in short rotation coppice Salix spp. 2. Resource capture and use in two morphologically diverse varieties. Biomass Bioenergy, 22(1): 27-39.
  • Ericss on K., Rosenqvist H., Nilss on L. J. 2009. Energy crop production costs in the EU. Biomass Bioenergy, 33(11): 1577-1586.
  • Fiala M., Bacenetti J. 2012. Economic, energetic and environmental impact in short rotation coppice harvesting operations. Biomass Bioenergy, 42:107-113.
  • Fitzpatrick J.J., O’sullivan C., Boylan H., Cribb en O., Costello D., Cronin K. 2013. Moisture sorption isotherm study of Sitka spruce, larch, willow and miscanthus chips and stems. Biosyst. Eng., 115(4): 474-481.
  • Gigler J.K., Meerdink G., Hendrix E. M. T. 1999. Willow supply strategies to energy plants. Biomass Bioenergy, 17(3): 185-198.
  • Gigler J.K., Van Loon W.K.P., Van Den Berg J.V., Sonneveld C., Meerdink G. 2000. Natural wind drying of willow stems. Biomass Bioenergy, 19(3): 153-163.
  • Jirjis R. 2005. Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis. Biomass Bioenergy, 28(2): 193-201.
  • Kuś J., Matyka M. 2009. Productivity of selected crops planted for energy purposes depending on soil quality. Fragm. Agron., 26(4): 103-110. (in Polish)
  • Kuś J., Matyka M. 2010. Yielding and biometric characters of energy willow depending on the habitat conditions. Probl. Inż. Rol., 3: 59-65. (in Polish)
  • Lavoie F., Savoie P., D’amours L., Joannis H. 2008. Development and field performance of a willow cutter-shredder-baler. Appl. Eng. Agric., 24(2): 165-172.
  • Mirck J., Schroeder W. 2013. Composition, stand structure, and biomass estimates of „willow rings” on the Canadian prairies. BioEnergy Res., 6(3): 864-876.
  • Mola-Yudego B. 2011. Trends and productivity improvements from commercial willow plantations in Sweden during the period 1986-2000. Biomass Bioenergy, 35: 446-453.
  • Rosenqvist H., Berndes G., Börjess on P. 2013. The prospects of cost reductions in willow production in Sweden. Biomass Bioenergy, 48: 139-147.
  • Savoie P., Lavoie F., D’amours L. 2009. Development of two headers for a versatile woody brush harvester-baler. Appl. Eng. Agric. 25(6): 811-817.
  • Savoie P., Lavoie F., D’amours L., Schroeder W., Kort J. 2010. Harvesting natural willow rings with a bio-baler around Saskatchewan Prairie marshes. Can. Biosyst. Eng., 52: 2.1-2.5.
  • Schroeder W., Kort J., Savoie P., Preto F. 2009. Biomass harvest from natural willow rings around prairie wetlands. Bioenergy Res., 2(3): 99-105.
  • Seixas F., Couto L., Rumm er R. B. 2006. Harvesting short- rotation woody crops (SRWC) for energy. Biomassa Energ., 3(2): 1-16.
  • Spinelli R., Magagnotti N., Picchi G., Lomb ardini C., Nati C. 2011. Upsized harvesting technology for coping with the new trends in short-rotation coppice. Appl. Eng. Agric., 27(4): 551-557.
  • Spinelli R., Nati C., Magagnotti N. 2009. Using modified foragers to harvest short-rotation poplar plantations. Biomass Bioenergy, 33: 817-821.
  • Spinelli R., Schweier J., De Francesco F. 2012. Harvesting techniques for non-industrial biomass plantations. Biosyst. Eng., 113(4): 319-324.
  • Stolarsk i M. 2008. Content of carbon, hydrogen and sulphur in biomass of some shrub willow species. J. Elem., 13(4): 655-663.
  • Stolarsk i M., Krzyżaniak M., Graban Ł. 2011. Evaluation of energy-related and economic aspects of heating a family house with dendromass in the north-east of Poland. Energy Build., 43: 433-439.
  • Stolarsk i M., Szczukowsk i S., Tworkowsk i J., Wróblewsk a H., Krzyżaniak M. 2011. Short rotation willow coppice biomass as an industrial and energy feedstock. Ind. Crops Prod., 33: 217-223.
  • Stolarsk i M. J., Krzyżaniak M., Szczukowsk i S., Tworkowsk i J., Bieniek A. 2013. Dendromass derived from agricultural land as energy feedstock. Pol. J. Environ. Stud., 22(2): 511-520.
  • Tharakan P. J., Volk T. A., Lindsey C. A., Abrahams on L. P., White E. H. 2005. Evaluating the impact of three incentive programs on the economics of cofiring willow biomass with coal in New York State. Energy Policy, 33(3): 337-347.
  • Volk T. A., Abrahams on L. P., Nowak C. A., Smart L. B., Tharakan P. J., White E. H. 2006. The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenergy, 30(8-9): 715-727.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.