PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 01 |
Tytuł artykułu

Osmotic stress and strong 2,4-D shock stimulate somatic-to-embryogenic transition in Kalopanax septemlobus (Thunb.) Koidz

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main problem associated with somatic embryo (SE) formation from mature plant explants is their low embryogenic competence. Kalopanax septemlobus (Thunb.) Koidz is a timber-yielding medicinal tree that is recalcitrant to somatic embryogenesis from explants derived from mature trees. In the present study, leaf explants derived from a 40-year-old K. septemlobus tree were subjected to osmotic stress, 2,4-D shock, chilling, or starvation stress to induce somatic embryogenesis. All of the stress treatments resulted in SE induction except control, the rates of which depended on the duration of the treatment. Maximum SE formation (23.3 %) was observed in explants treated with 1 M sucrose solution for 6 h, followed by explants treated with 100 lM 2,4-D for 1 day (16.7 %) while non-treated explants failed to produce somatic embryo. Callose accumulation from leaf explants after these two treatments increased 40- and 30-fold, respectively, compared with the control. Thus, osmotic stress produced by sucrose and 2,4-D shock treatment for a specific period of time can substantially increase the number of SEs formed from leaves from the grafted shoots of mature K. septemlobus trees. The results of this study may be useful for producing SEs from this valuable plant, as well as for breeding programs for improving selected K. septemlobus genotypes.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
37
Numer
01
Opis fizyczny
Article: 1710 [9 p.], fig.,ref.
Twórcy
autor
  • Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-847, Republic of Korea
autor
  • Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-847, Republic of Korea
autor
  • Research Center for the Development of Advanced Horticultural Technology, Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University, Cheongju 361-763, Republic of Korea
autor
  • Research Center for the Development of Advanced Horticultural Technology, Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University, Cheongju 361-763, Republic of Korea
Bibliografia
  • Andersone U, Ievinsh G (2004) Regulation of cytokinin responsecompetence by cold treatment of mature Pinus sylvestris tissues in vitro. Acta Universitatis Latviensis, Biology 676:143–148
  • Baluska F, Samaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491
  • Bonga JM, Klimaszewska K, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult 100:241–254
  • Cantelmo L, Soares BO, Rocha LP, Pettinelli JA, Callado CH, Mansur E, Castellar A, Gagaliardi RF (2013) Repetitive somatic embryogenesis from leaves of the medicinal plant Petiveria alliacea L. Plant Cell Tissue Organ Cult 115:385–393
  • Choi YE, Kim JH, Youn ES (1999) High frequency of plant production via somatic embryogenesis from callus or cell suspension cultures in Eleutherococcus senticosus. Ann Bot 83:309–314
  • Choi JW, Huh K, Kim SH, Lee KT, Park HJ, Han YN (2002a) Actinociceptive and anti-rheumatoidal effects of Kalopanax pictus extract and its saponin components in experimental animals. J Ethnopharmacol 79:199–204
  • Choi YE, Ko SK, Lee KS, Youn ES (2002b) Production of plantlets of Eleutherococcus sessiliflorus via somatic embryogenesis and successful transfer to soil. Plant Cell Tissue Organ Cult 69:201–204
  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228
  • Fehér A, Pasternak TP, Ötvös K, Dudits D (2005) Plant protoplasts: consequences of lost cell walls. In: Murch S, Saxena PK (eds) Journey of a single cell to a plant. Science Publishers Inc., Enfield, pp 59–89
  • Gairi A, Rashid A (2005) Direct differentiation of somatic embryos on cotyledons of Azadirachta indica. Biol Plant 49:169–173
  • Hirano Y, Pannatier EG, Zimmermann S, Brunner I (2004) Induction of callose in roots of Norway spruce seedlings after short-term exposure to aluminum. Tree Physiol 24:1279–1283
  • Hirt H, Pay A, Gyorgyey J, Bako L, Nemeth K, Bogre L, Schweyen RJ, Heberle-Bors E, Dudits D (1991) Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2. Proc Natl Acad Sci USA 88:1636–1640
  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114
  • Krishna Raj S, Vasil IK (1995) Somatic embryogenesis in herbaceous monocots. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 417–470
  • Lang I, Barton DA, Overall RL (2004) Membrane-wall attachment in plasmolysed plant cells. Protoplasma 224:231–243
  • Lee EB, Li DW, Hyun JE, Kim IH, Whang WK (2001a) Antiinflammatory activity of methanol extract of Kalopanax pictus bark and its fractions. J Ethnopharmacol 77:197–201
  • Lee EK, Cho DY, Soh WY (2001b) Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Rep 20:408–415
  • Lo Schiavo F (1995) Early events in embryogenesis. In: Bajaj YPS (ed) Somatic embryogenesis and synthetic seed I. Biotechnology in Agriculture and Forestry, vol 30. Springer, Berlin, pp 20–29
  • Mater AA (1986) In vitro propagation of Phoenix dactylifera L. Date Palm J 4:137–152
  • McLean BG, Hempel FD, Zambryski PC (1997) Plant intercellular communication via plasmodesmata. Plant Cell 9:1043–1054
  • Moon HK, Youn Y (1999) Somatic embryogenesis from winter buds of 10-year-old Aralia elata. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 5. Kluwer, Dordrecht, pp 129–134
  • Moon HK, Kim SH, Kim BK (2002) Micropropagation of Kalopanax pictus Nakai via axillary bud culture. J Kor For Soc 91:775–780
  • Moon HK, Kim YW, Lee JS, Choi YE (2005) Micropropagation of Kalopanax pictus tree via somatic embryogenesis. In Vitro Cell Dev Biol Plant 41:303–306
  • Moon HK, Park SY, Kim YW, Kim SH (2008) Somatic embryogenesis and plantlet production using rejuvenated tissues from serial grafting of a mature Kalopanax septemlobus tree. In Vitro Cell Dev Biol Plant 44:119–127
  • Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479
  • Nolan KE, Saeed NA, Rose RJ (2006) The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis. Plant Cell Rep 25:711–722
  • Park HJ, Kim DH, Choi JW, Park JH, Han YN (1998) A potent antidiabetic agent from Kalopanax pictus. Arch Pharm Res 21:24–29
  • Park SY, Klimaszewska K, Park JY, Mansfield SD (2010) Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol 30:1469–1478
  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehe´r A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819
  • Radford JE, Vesk M, Overall RL (1998) Callose deposition at plasmodesmata. Protoplasma 201:30–37
  • Roberts AG, Oparka K (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124
  • Rose RJ, Nolan KE (2006) Invited review: genetic regulation of somatic embryogenesis with particular reference to Arabidopsis thaliana and Medicago truncatula. In Vitro Cell Dev Biol Plant 42:473–481
  • Sivaguru M, Fujiwara T, Yang Z, Osawa H, Samaj J, Baluska F, Mori T, Volkmann D, Maeda T, Matsumoto H (2000) Aluminuminduced 1–3-b-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata: a new mechanism of Aluminum toxicity in plants. Plant Physiol 124:991–1018
  • Smith DL, Krikorian AD (1989) Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium. Am J Bot 76:1832–1843
  • Somleva MN, Schmidt EDL, de Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726
  • Vikrant, Rashid A (2003) Somatic embryogenesis or shoot formation following high 2,4-D pulse-treatment of mature embryos of Paspalum scrobiculatum. Biol Plant 46:297–300
  • Yeoung YR, Lee MH, Kim BS, Kim HK, Kim JH (2001) Seed germination and softwood cutting technique of Kalopanax pictus Nakai. Kor J Plant Res 14:53–59
  • Yeung EC (1999) The use of histology in the study of plant tissue culture systems-some practical comments. In Vitro Cell Dev Biol Plant 35:137–143
  • You XL, Yi JS, Choi YE (2006) Cellular change and callose accumulation in zygotic embryos of Eleutherococcus senticosus caused by plasmolyzing pretreatment result in high frequency of single-cell-derived somatic embryogenesis. Protoplasma 227:105–112
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-83d6e19d-6275-43a7-be32-5cac14cda37a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.