PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 1 |

Tytuł artykułu

High-throughput sequencing analysis of endophytic bacteria diversity in fruits of white and red pitayas from three different origins

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Pitaya contains various types of polyphenols, flavonoid and vitamins which are beneficial for health and it is among the most important commercial tropical fruits worldwide. Endophytic bacteria might be beneficial for plant growth and yield. However, bacterial diversity in pitaya is poorly characterized. In this study, fruits of white and red pitayas from three different origins (Thailand, Vietnam and China) were chosen for endophytic bacteria diversity investigation by using Illumina HiSeq second-generation high-throughput sequencing technology. Large number of endophytic bacteria were detected and 22 phyla, 56 classes, 81 orders, 122 families and 159 genera were identified. Endophytic bacteria diversity was uneven among pitaya fruits from different origins and bacteria structure was different between white pitaya group and red pitaya group. Phylum Bacteroidetes, classes Bacteroidia and Coriobacteriia, orders Bacteroidales and Coriobacteriales, families Prevotellaceae, Bacteroidaceae, Ruminococcaceae, Paraprevotellaceae, Rikenellaceae, Alcaligenaceae and Coriobacteriaceae, genera Prevotella, Bacteroides, Roseburia, Faecalibacterium and Sutterella were statistically significant different species (P < 0.05) between white and red pitayas. These findings might be useful for growth improvement, fruit preservation and processing of different pitaya species from different origins.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

1

Opis fizyczny

p.27-35,fig.,ref.

Twórcy

autor
  • School of Agriculture, Kunming University, Kunming, Yunnan, China
autor
  • Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
autor
  • Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
autor
  • Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
autor
  • School of Medicine, Yunnan University, Kunming, Yunnan, China
autor
  • School of Medicine, Yunnan University, Kunming, Yunnan, China
autor
  • School of Medicine, Yunnan University, Kunming, Yunnan, China
autor
  • School of Medicine, Yunnan University, Kunming, Yunnan, China
autor
  • School of Agriculture, Kunming University, Kunming, Yunnan, China
autor
  • School of Agriculture, Kunming University, Kunming, Yunnan, China
autor
  • School of Medicine, Yunnan University, Kunming, Yunnan, China

Bibliografia

  • Amann, R.I., W. Ludwig and K.H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–169.
  • Assmus B., P. Hutzler, G. Kirchhof, R. Amann, J.R. Lawrence and A. Hartmann. 1995. In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl .Environ. Microbiol. 61: 1013–1019.
  • Berg G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84: 11–18.
  • Berry D., K.B. Mahfoudh, M. Wagner and A. Loy. 2011. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ. Microbiol. 77: 7846–7849.
  • Bokulich N.A., S. Subramanian, J.J. Faith, D. Gevers, J.I. Gordon, R. Knight, D.A. Mills, and J.G. Caporaso. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods. 10: 57–59.
  • Caporaso J.G., J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Peña, J.K. Goodrich, J.I. Gordon and others. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7: 335–336.
  • Compant S., B. Duffy, J. Nowak, C. Clement and E.A. Barka. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951–4959.
  • Compant S., M.G. van der Heijden and A. Sessitsch. 2010. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol. Ecol. 73: 197–214.
  • Davey H.M. 2011. Life, death, and in-between: meanings and methods in microbiology. Appl. Environ. Microbiol. 77: 5571–5576.
  • DeSantis T.Z., P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie,K. Keller, T. Huber, D. Dalevi, P. Hu and G.L. Andersen. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069–5072.
  • Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792–1797.
  • Edgar R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 10: 996–998.
  • Edgar R.C., B.J. Haas, J.C. Clemente, C. Quince and R. Knight. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27: 2194–2200.
  • Ercolini D. 2013. High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl. Environ. Microbiol. 79: 3148–3155.
  • Ercolini D., G. Moschetti, G. Blaiotta and S. Coppola. 2001. The potential of a polyphasic PCR-dGGE approach in evaluating microbial diversity of natural whey cultures for water-buffalo Mozzarella cheese production: bias of culture-dependent and culture-independent analyses. Syst. Appl. Microbiol. 24: 610–617.
  • Esquivel P., F.C. Stintzing and R. Carle. 2007. Phenolic compound profiles and their corresponding antioxidant capacity of purple pitaya (Hylocereus sp.) genotypes. Z Naturforsch C. 62: 636–644.
  • Giraffa G.and F. Neviani. 2001. DNA-based, culture-independent strategies for evaluating microbial communities in food-associated ecosystems. Int. J. Food Microbiol. 67: 19–34.
  • Haas B.J., D. Gevers, A.M. Ear, M. Feldgarden, D.V. Ward,G. Giannoukos, D. Ciulla, D. Tabbaa, S.K. Highlander, E. Sodergren and others. 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21: 494–504.
  • Hardoim P.R., L.S. van Overbeek and J.D. Elsas. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16: 463–471.
  • Jany J.L. and G. Barbier. 2008. Culture-independent methods for identifying microbial communities in cheese. Food Microbiol. 25: 839–848
  • Keisam S., W. Romi, G. Ahmed, and K. Jeyaram. 2016. Quantifying the biases in metagenome mining for realistic assessment of microbial ecology of naturally fermented foods. Sci. Rep. 6: 34155.
  • Klindworth A., E. Pruesse, T. Schweer, J. Peplies, C. Quast,M. Horn and F.O. Glockner. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 4: 1e1.
  • Long H.H., D.D. Schmidt and I.T. Baldwin. 2008. Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLOS ONE. 3: e2702.
  • Magoc T. and S.L. Salzberg. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 27: 2957–2963.
  • Mayo B., C.T Rachid, A. Alegria, A.M. Leite, R.S. Peixoto andS. Delgado. 2014. Impact of next generation sequencing techniques in food microbiology. Curr. Genomics. 15: 293–309
  • Ortiz T.A. and L.S. Takahashi. 2015. Physical and chemical characteristics of pitaya fruits at physiological maturity. Genet. Mol. Res. 14: 14422–14439.
  • Piotrowska-Cyplik A., K. Myszka, J. Czarny, K. Ratajczak, R. Kowalski, R. Bieganska-Marecik, J. Staninska-Pieta, J. Nowak, and P. Cyplik. 2017. Characterization of specific spoilage organisms (SSOs) in vacuum-packed ham by culture-plating techniques and MiSeq next-generation sequencing technologies. J. Sci. Food Agric. 97: 659–668.
  • Ramli N.S., L. Brown, P. Ismail and A. Rahmat. 2014. Effects of red pitaya juice supplementation on cardiovascular and hepatic changes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats. BMC Complement. Altern. Med. 14: 189.
  • Sessitsch A., B. Reiter, U. Pfeifer and E. Wilhelm . 2002. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol. Ecol. 39: 23–32.
  • Song H., Z. Zheng, J. Wu, J. Lai, Q. Chu and X. Zheng. 2016. White Pitaya (Hylocereus undatus) Juice attenuates insulin resistance and hepatic steatosis in diet-induced obese mice. PLOS ONE. 11: e0149670.
  • Suh D.H., S. Lee, D.Y. Heo, Y.S. Kim, S.K. Cho and C.H. Lee. 2014. Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity. J. Agric. Food Chem. 62: 8764–8771.
  • Wang Q., G.M. Garrity, J.M. Tiedje and J.R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261–5267.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-83b80039-770a-42e1-8427-949fc4a50414
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.