PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 3 |

Tytuł artykułu

Salt tolerance is unrelated to carbohydrate metabolosm in cowpea cultivars

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Under salinity stress, plants commonly accumulate carbohydrates for osmotic adjustment to balance the excess accumulated ions and to protect biomolecules. We selected two cowpea cultivars with contrasting response to salinity, Pitiúba (salt-tolerant) and TVu (salt-sensitive), to investigate whether the salt tolerance could be associated with changes in carbohydrate accumulation and metabolism in leaves and roots during a long-term experiment. Two salt treatments (0 and 75 mM NaCl) were applied to 10-day-old plants grown in nutrient solution for 24 days. Despite some changes in carbohydrate accumulation and carbohydrate metabolism enzymes induced by salt stress, no consistent alterations in carbohydrates could be found in leaves or roots in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation in cowpea.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

3

Opis fizyczny

p.887-896,fig.,ref.

Twórcy

  • Departamento de Fitotecnia, Universidade Federal do Ceara, Fortaleza, Ceara, Brazil
  • Unidade Academica Especializada em Ciencias Agrarias, Universidade Federal do Rio Grande do Norte, Macaiba, Rio Grande do Norte, Brazil
  • Departamento de Engenharia Agricola, Universidade Federal do Ceara, INCTSal/CNPq, Fortaleza, Ceara, Brazil
  • Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, INCTSal/CNPq, Caixa Postal 6039, Fortaleza, Ceara 60455-970, Brazil
autor
  • Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, INCTSal/CNPq, Caixa Postal 6039, Fortaleza, Ceara 60455-970, Brazil
  • Departamento de Biologia Vegetal, Universidade Federal de Vicosa, Vicosa, Minas Gerais 36571-000, Brazil
  • Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, INCTSal/CNPq, Caixa Postal 6039, Fortaleza, Ceara 60455-970, Brazil

Bibliografia

  • Azevedo-Neto AD, Prisco JT, Enéas-Filho J, Abreu CEB, Gomes-Filho E (2006) Effect of sat stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and saltsensitive maize genotypes. Environ Exp Bot 56:87–94. doi: 10.1016/j.envexpbot.2005.01.008
  • Balibrea ME, Dell'amico J, Bolarin MC, Alfocea FP (2000) Carbon partitioning and sucrose metabolism in tomato plants growing under salinity. Physiol Plantarum 110:503–511. doi:10.1111/j. 1399-3054.2000.1100412.x
  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97. doi:10.1016/0167-7799(96)80929-2
  • Chartzoulakis K, Psarras G, Vemmos S, Loupassaki M, Bertaki M (2006) Response of two olive cultivars to salt stress and potassium supplement. J Plant Nutr 19:2063–2078. doi:10.1080/ 01904160600932682
  • Costa PHA, Silva JV, Bezerra MA, Enéas-Filho J, Prisco JT, Gomes-Filho E (2003) Crescimento e níveis de solutos orgânicos e inorgânicos em cultivares de Vigna unguiculata submetidos à salinidade. Rev Bras Bot 26:289–297. doi:10.1590/S0100-8404 2003000300002
  • Cram WJ (1976) Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply. In: Luttge U, Pitman MG (eds) Encyclopaedia of plant physiology. Springer, Berlin, pp 284–316
  • Dantas BF, Ribeiro LS, Aragão CA (2005) Physiological response of cowpea seeds to salinity stress. Rev Bras Sementes 27:144–148. doi:10.1590/S0101-31222005000100018
  • De Costa W, Zörb C, Hartung W, Schubert S (2007) Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress. Physiol Plant 131:311–321. doi:10.1111/j.1399-3054.2007.00962.x
  • Doehlert DC, Huber SC (1983) Regulation of spinach leaf sucrose phosphate synthase by glucose-6-phosphate, inorganic phosphate and pH. Plant Physiol 73:989–994. doi:10.1104/pp.73.4989
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017
  • Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp.). Field Crop Res 53:187–204. doi:10.1016/S0378-4290(97)00031-2
  • Fernandes FM, Arrabac¸a MC, Carvalho LMM (2004) Sucrose metabolism in Lupinus albus L. under salt stress. Biol Plantarum 48:317–319. doi:10.1023/B:BIOP.0000033465.59361.d2
  • Geigenberger P, Stitt M (1993) Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 189:329–339. doi:10.1007/BF00194429
  • Hare PD, Cress WA, Van-Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553. doi:10.1046/j.1365-3040.1998.00309.x
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol 51:463–499. doi:10.1146/annurev.arplant.51.1.463
  • Hodge JE, Hofreiter BR (1962) Determination of reducing sugars and carbohydrates. In: Wilster RL, Wolfrom ML (eds) Methods in carbohydrate chemistry. Academic Press, New York, pp 380–394
  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol 47:431–444. doi:10.1146/annurev.arplant.47.1.431
  • Jouve L, Hoffmann L, Hausman J-F (2004) Polyamine, carbohydrate, and proline content changes during salt stress exposure of aspen (Populus tremula L.): involvement of oxidation and osmoregulation metabolism. Plant Biol 6:74–80. doi:10.1055/s-2003-44687
  • Kaur S, Gupta AK, Kaur N (2003) Indole acetic acid mimics the effect of salt stress in relation to enzymes of carbohydrate metabolism in chickpea seedlings. Plant Growth Regul 39:91–98. doi:10.1023/A:1021858802856
  • Kerepesi J, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487
  • Lacerda CF, Assis-Júnior JO, Lemos-Filho LCA, Guimarães FVA, Oliveira TS, Gomes-Filho E, Prisco JT, Bezerra MA (2006) Morpho-physiological responses of cowpea leaves to salt stress. Braz J Plant Physiol 18:455–465. doi:10.1590/S1677-0420200 6000400003
  • Meloni DA, Gulotta MR, Martínez CA (2008) Salinity tolerance in Schinopsis quebracho colorado: seed germination, growth, ion relations and metabolic responses. J Arid Environ 72:1785–1792. doi:10.1016/j.jaridenv.2008.05.003
  • Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164:157–167. doi:10.1016/j.jplph.2005.12.004
  • Murillo-Amador B, Troyo-Diéguez E, López-Aguilar R, López-Cortes A, Tinoco-Ojanguren CL, Jones HG, Kaya C (2002) Matching physiological traits and ion concentrations associated with salt stress in cowpea genotypes. Aust J Agric Res 53:1243–1255. doi:10.1071/AR01133
  • Murillo-Amador B, Troyo-Diéguez E, García-Hernández JL, López-Aguilar R, Ávila-Serrano NY, Zamora-Salgado S, Rueda-Puente EO, Kaya C (2006) Effect of NaCl salinity in the genotypic variation of cowpea (Vigna unguiculata) during early vegetative growth. Sci Hortic 108:423–431. doi:10.1016/j.scienta.2006.02.010
  • Muscolo A, Panuccio MR, Sidari M (2003) Effects of salinity on growth, carbohydrate metabolism and nutritive properties of kikuyu grass (Pennisetum clandestinum Hochst). Plant Sci 164:1103–1110. doi:10.1016/S0168-9452(03)00119-5
  • Ottow EA, Brinker M, Teichmann T, Fritz E, Kaizer W, Brosche M, Kangasjarvi J, Jiang X, Polle A (2005) Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol 139:1762–1772. doi:10.1104/pp.105.069971
  • Praxedes SC, Lacerda CF, DaMatta FM, Prisco JT, Gomes-Filho E (2010) Salt tolerance is associated with differences in ion accumulation, biomass allocation and photosynthesis in cowpea cultivars. J Agron Crop Sci 196:193–204. doi:10.1111/j.1439-037X.2009.00412.x
  • Rejšková A, Patková L, Stodůlková E, Lipavská H (2007) The effect of abiotic stresses on carbohydrate status of olive shoots (Olea europaea L.) under in vitro conditions. J Plant Physiol 164:174–184. doi:10.1016/j.jplph.2005.09.011
  • Roitsch T, Gonzáles M-C (2004) Function and regulation of plant invertases. Trends Plant Sci 9:606–613
  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Company, New York
  • Sung SS, Xu DP, Black CC (1989) Identification of actively filling sucrose sinks. Plant Physiol 89:1117–1121
  • Taiz L, Zeiger E (2006) Plant Physiology. Sinauer Associates, Sunderland
  • Touchette BW, Burkholder JM (2000) Overview of the physiological ecology of carbon metabolism in seagrasses. J Exp Mar Biol Ecol 250:169–205. doi:10.1016/S0022-0981(00)00196-9
  • Trethewey RN, Geigenberger P, Riedel K, Hajirezaei M-R, Sonnewald U, Stitt M, Riesmeier JW, Willmitzer L (1998) Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant J 15:109–118. doi:10.1046/j.1365-313X.1998.00190.x
  • Trivedi HB, Rao TVR, Bagdi DL, Rao GG (2004) Influence of silicon on growth and salt uptake in wheat under salinity. Indian J Plant Physiol 9:360–366
  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31–67
  • Yancey P, Clark ME, Had SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte system. Science 217:1214–1222. doi:10.1126/science.7112124

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-839a2384-df74-4249-bdad-a907eec5d415
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.