PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 65 | 2 |
Tytuł artykułu

Effect of microwave treatment on microbial contamination of honeys and on their physicochemical and thermal properties

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, microwave heating has become a common method for pasteurization and sterilization of food. Honey is a sweet substance produced by worker honeybees from nectar of flowers. The major microbial contaminants include moulds and yeasts, as well as the spore-forming bacteria, being their counts indicative of honeys' commercial quality and safety. Paenibacillus larvae is also of interest since it causes American foulbrood (AFB) in honeybee larvae. The main quality factors that are used in the honey international trade are moisture, hydroxymethylfurfural content (HMF), and enzymatic indices. Moreover, honey exhibits several thermal events, the most important being the glass transition temperature (Tg). The aim of this work was to evaluate microwave effect (800 watts during 45 and 90 seconds) on microbial content in particular over P larvae spores retained in honey, and on physicochemical and thermal properties. Microwave promoted a decrease of microbial count with time of exposure, including P larvae. Moisture content diminished after treatment, while Tg increased linearly, and acidity decremented in the majority of cases. Honeys darkened and HMF exceeded the permissible value. Diastase and glucose-oxidase enzymes were totally inactivated by microwave treatment.
Wydawca
-
Rocznik
Tom
65
Numer
2
Opis fizyczny
p.119-126,ref.
Twórcy
  • Centro de Investigacion en Abejas Sociales, Departamento de Biologia, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
  • Departamento de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
  • CIC, La Plata, Buenos Aires, Argentina
  • Centro de Investigacion en Abejas Sociales, Departamento de Biologia, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
  • CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
autor
  • Centro de Investigacion en Abejas Sociales, Departamento de Biologia, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
  • Laboratorio Fares Taie, Mar del Plata, Argentina
autor
  • INTEMA, Instituto de Investigaciones en Ciencia y Tecnologia de Materiales, UNMDP-CONICET, Mar del Plata, Argentina
autor
  • Centro de Investigacion en Abejas Sociales, Departamento de Biologia, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
  • Departamento de Quimica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
  • CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
Bibliografia
  • 1. Acquarone C.A., Parámetros fisicoquímicos de mieles, relación entre los mismos y su aplicación potential para la determinación del origen botánico y/o geográfico de mieles argentinas. 2004, in: Las Tesinas de Belgrano, Tesinas de Ciencias Exactas y Naturales, n° 19 (ed. Universidad de Belgrano). Publicaciones, Departamento de Investigación, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Buenos Aires, Argentina, pp. 1-56 (in Spanish).
  • 2. AFC. 1969, Código Alimentario Argentino, Alimentos azucarados, Capitulo X, Artículo 782. Ministerio de Agricultura, Ganadería y Pesca, Ciudad de Buenos Aires. Argentina (in Spanish).
  • 3. Ahmed J., Prabhu S.T., Raghavan G.S.V., Ngadi M., Physico-chemical, rheological, calorimetric and dielectric behaviour of selected Indian honeys. J. Food Eng., 2007, 79, 1207-1213.
  • 4. Alippi A.M., Characterization of Bacillus larvae White, the causative agent of American foulbrood of honeybees. First record of its occurrence in Argentina. Rev. Argent. Microbiol., 1992, 24, 67-72.
  • 5. Alippi A.M., Detection of Bacillus larvae spores in Argentinian honeys by using a semi-selective medium. Microbiology, 1995, 11, 343-350.
  • 6. Alippi A.M., López C.A., Aguilar M.O., Differentiation of Pae-nibacillus larvae subsp. larvae, the cause of American foulbrood of honey bees, by using PCR and restriction fragment analysis of genes encoding 16S rRNA. Appl. Environ. Microbiol., 2002, 68, 3655- 3660.
  • 7. Aloise V, Determination of quality chemical parameters of honey from Chubut (Argentinean Patagonia). Chil. J. Agr. Res., 2010, 70, 640-645.
  • 8. AOAC. 2000a, Official method 920.180 Honey (Liquid, Strained or Comb) preparation of test samples, Official Methods of Analysis of AOAC International, 17th ed. Washington, DC.
  • 9. AOAC. 2000b, Official method 969.38 Moisture in honey, Official Methods of Analysis of AOAC International, 17th ed. Washington, DC.
  • 10. AOAC. 2000c, Official method 962.19 Acidity (Free, Lactone, and Total) of Honey, Official Methods of Analysis of AOAC International, 17th ed. Washington, DC.
  • 11. AOAC. 2003, Official method 958.09, Diastatic Activity of Honey, Official Methods of Analysis of AOAC International, 17th ed. Washington, DC.
  • 12. Bachmann L.H.E., Estudios preliminares de caracterización miel de abeja: determinación de carbohidratos por GC/MS y análisis enzimático. 2007, in: Tesis de grado, n° 4, 6, 8 (ed. Sistema de Bibliotecas UACh). Facultad de Ciencias, Universidad Austral de Chile., Valdivia, Chile, pp. 23-27 (in Spanish).
  • 13. Baggio A., Gallina A., Dainese N., Manzinello C., Mutinelli F., Serra G., Colombo R., Carpana E., Sabatini A.G., Wallner K., Piro R., Sangiorgi E., Gamma radiation: A sanitating treatment of AFB-contaminated beekeeping equipment gamma radiation sanitation in beekeeping management. Apiacta, 2005, 40, 22-27.
  • 14. Bartakova K., Drackova M., Borcovcova I., Vorlova L., Impact of microwave heating on hydroximethylfurfural content in Czech honeys. Czech J. Food Sci., 2011, 29, 328-336.
  • 15. Bath P.K., Singh N., A comparison between Helianthus annuus & Eucalyptus lanceolatus honey. Food Chem., 1999, 67, 389-397.
  • 16. Belitz H.D., Grosch W., Schieberle P., Food Chemistry. 2004, 3rded., Springer Verlag, Germany, pp. 260-263.
  • 17. Bentabol Manzanares A., Hernández Garcia Z., Rodriguez Galdón B., Rodriguez Rodriguez E., Diaz Romero C., Physico-chemical characteristics of minor monofloral honeys from Tener-ife, Spain. Food Sc. Tech., 2013, 5, 572-578.
  • 18. Beveridge T.J., Use of the Gram stain in microbiology. Biotech. Histochem., 2001, 76, 111-118.
  • 19. Bhandari T.R., Howes T., Implication of glass transition for the drying and stability of dried foods. J. Food Eng., 1999, 40, 71-79.
  • 20. Bianchi E.M., Control de calidad de la miel y la cera. 1990, in: Boletin de los Servicios Agricolas, n° 68/3 (ed. FAO), (in Spanish).
  • 21. Bonvehi J.S., Torrento M.S., Raich J.M., Invertase, activity in fresh and processed honeys. J. Sci. Food. Agric., 2000, 80, 507-512.
  • 22. Castro V, Arias M.L., Antillon F., Jimenez M., Efectos de las microondas sobre la sobrevivencia de algunas bacterias patóge-nas en comidas populares costarricenses. Rev. Costarric. Cienc. Méd., 1997, 18, 19-27 (in Spanish).
  • 23. Celandroni F., Longo I., Tosoratti N., Giannessi F., Ghelardi E., Salvetti S., Baggiani A., Senesi S., Effect of microwave radiation on Bacillus subtilis spores. J. Appl. Microbiol., 2004, 97, 1220-1227.
  • 24. Coll Cardenas F., Villat C., Laporte G., Noia M., Mestorino M., Características microbiológicas de la miel. Revisión bibliográ-fica. J. Veterinaria Cuyana., 2008, n° 3, 1 y 2, 29-34. (in Spanish).
  • 25. Cordella C., Faucon J. P., Cabrol Bass D., Sbirrazuolli N., Application of DSC as a tool for honey floral species characterization and adulteration detection. J. Therm. Anal. Cal., 2003, 71, 279-290.
  • 26. Costa P.A., Moraes I.C.F., Bittante A.M.Q.B., Sobral P.J.A., Gomide C.A., Carrer C.C., Thermal and Rheological Properties of Brazilian Honeys. 2011, in: International Congress on Engineering and Food 11th, Engineering Properties of Foods, vol. 2 (eds. S.P. Taoukis, N.G. Stoforos, VT. Karathanos, G.D. Sarava-cos). School of Chemical Engineering, National Technical University of Athens, Athens, Greece, pp. 1329-1330.
  • 27. de Graaf D.C.d., Vandekerchove D., Dobbelaere W., Peeters J.E., Jacobs F.J., Influence of the proximity of American foulbrood cases and apicultural management on the prevalence of Paenibacillus larvae spores in Belgian honey. Apidologie, 2001, 32, 587-599.
  • 28. Desalegn A., The antibacterial activity of honey. Int. J. Curr. Res. Aca. Rev., 2013, 1, 102-116.
  • 29. Dingman D.W., Stahly D.P., Medium promoting sporulation of Bacillus larvae and metabolism of médium components. Appl. Environ. Microbiol., 1983, 46, 860-869.
  • 30. Dranca F., Oroian M., Impact of microwave heating on chemical properties of Romanian honeys. J. Agroaliment. Proc. Technol., 2013, 19, 464-469.
  • 31. Estrada H., Gamboa M.M., Chavez C., Arias M.L., Evaluación de la actividad antimicrobiana de la miel de abeja contra Staphylococcus aeureus, Staphylococcus epidermis, Pseudomona aeuroginosa, Escherichia coli, Salomnella enteritidis, Listeria monocytogenes y Aspergillus niger. Evaluación de su carga microbiológica. 2005, in: Archivos Latinoamericanos de Nutrición, Vol. 55 (ed. Capítulo Venezolano). Publicación Oficial de la Sociedad Latinoamericana de Nutrición, pp. 167-171 (in Spanish).
  • 32. Fallico B., Zappala M., Arena E., Verzera A., Effects of conditioning on HMF content in unifloral honeys. Food Chem., 2004, 85, 305-313.
  • 33. Frazier WC., Westhoff D.C., Food Microbiology. 1978, 3rded., Tata McGraw-Hill Publishing Company, NewYork, pp. 185-193.
  • 34. Fries I., Camazine S., Implications of horizontal and vertical pathogen transmissions for honey bee epidemiology. Apidologie, 2001, 32, 199-214.
  • 35. Hansen H., Rasmussen B., The investigation of honey from bee colonies for Bacillus larvae. Dan. J. Plant Soil Sci., 1986, 90, 81-86.
  • 36. Hebbar H.U., Nandini K.E., Lakshmi M.C., Subramanian R., Microwave and infrared heat processing of honey and its quality. Food. Sci. Technol. Res., 2003, 9, 49-53.
  • 37. Heyndrickx M., Vandemeulebroecke K., Hoste B., Janssen P., Kersters K., De Vos P., Logan N.A., Ali N., Berkeley R., Reclas-sification of Paenibacillus (formerly Bacillus) pulvifaciens (Naka-mura 1984) Ash et al. 1994, a later subjective synonym of Paenibacillus (formerly Bacillus) larvae (White 1906) Ash et al. 1994, as a subspecies of P. larvae, with emended descriptions of P. larvae as P. larvae subsp. larvae and P. larvae subsp. pulvifaciens. Int. J. Syst. Bacteriol., 1996, 46, 270- 279.
  • 38. Ibarz A., Pagán J., Garza S., Kinetic models of non- enzymatic browning in apple puree. J. Sci. Food Agric., 2000, 80, 1162-1168.
  • 39. International Commission on Microbiological Specifications for Foods (ICMSF). Microorganismos de los alimentos. Su significado y métodos de enumeración. 2000., vol 1 (ed. Acribia S.A.). Zaragoza, pp. 165-179.
  • 40. IHC. 1999, Harmonised methods of the international honey commission. International Honey Commission, pp. 1-54.
  • 41. ISO. 15213. 2003, Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of sulfite-reducing bacteria growing under anaerobic conditions. International Organization for Standarization.
  • 42. Iurlina M.O., Fritz R., Characterization of microorganisms in Argentinian honeys from different sources. Int. J. Food Microbiol., 2005, 105, 297-304.
  • 43. Karabagias I.K., Badeka A.V, Kontakos S., Karabournioti S., Kontominas M.G., Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses. Food Chem., 2014, 165, 181-190.
  • 44. Kedzia B., Kedzia A., Hołderna-Kedzia E., Studies on the occurrence of clostridia spores in honey. Bacillus and Clostridium. Wyd. Pszczel., 1996, 37-39 (in Polish).
  • 45. Kohn's B.J., Técnicas de quirófano. 1998, 8üed., Harcourt Brace, Madrid, pp. 207-224 (in Spanish).
  • 46. Kowalski S., Lukasiewicz M., Bednarz S., Panus M., Diastase number changes during thermal and microwave processing of honey. Czech J. Food Sci., 2012, 30, 21-26.
  • 47. Kretavictus J., Kurtinaitiene B., Racys J., Ceksteryte V., Inactiva-tion of glucose oxidase during heat-treatment decrhistallization of honey. Agriculture., 2010, 97, 115-122.
  • 48. Lauro F.M., Favaretto M., Covolo L., Rassu M., Bertoloni G., Rapid detection of Paenibacillus larvae from honey and hive samples with a novel nested PCR protocol. Int. J. Food Microbiol., 2003, 81, 195-201.
  • 49. Lazaridou A., Biliaderis C.G., Bacabdritsos N., Sabattini A.G., Composition, thermal and rehological behaviour of selected Greek honeys. J. Food Eng., 2004, 64, 9-21.
  • 50. Michail K., Matzi V, Maier A., Herwig R., Greilberger J., Juan H., Kunert O., Wintersteiger R., Hydroxymethylfurfural: an enemy or a friendly xenobiotic? A bioanalytical approach. Anal. Bioanal. Chem., 2007, 387, 2801-2814.
  • 51. Montenegro S.B., Avallone C.M., Aztarbe M., Osuna M., Actividad enzimática en miel de Apis mellifera. Comunicaciones cientí-ficas y tecnológicas., 2006, T095, 1-3.
  • 52. Morales F.J., Romero C., Jimenez-Perez S., A kinetic study on 5-hydroxymethylfurfural formation in Spanish UHT milk stored at different temperatures. J. Food Sci. Tech. Mys., 1997, 34, 28-32.
  • 53. Peréz A., Alexander H., Matos Chamorro A., Análisis comparativo de la calidad fisicoquímica, microbiológica y organoléptica de la miel de abeja (Apis mellifera) producida en diferentes regio-nes de Perú. Rev. Invest. Univ., 2009, 1, 5-11 (in Spanish).
  • 54. Shimanuki H., Bacteria. 1997, in: Honey Bee Pests, Predators, and Diseases (eds. R.A. Morse, K. Flottum). A.I. Root Company., Medina, Ohio, pp. 35-54.
  • 55. Silvano M.F., Varela M.S., Palacio M.A., Ruffinengo S., Yamul D.K., Physicochemical parameters and sensory properties of honeys from Buenos Aires region. Food Chem., 2014, 152, 500-507.
  • 56. Singh N., Bath P.K., Relationship between heating and hydroxy-methylfurfural formation in different honey types. J. Food Sci. Tech., 1998, 35, 154-156.
  • 57. Sturtevant A.P., Quantitative demonstration of the presence of spores of Bacillus larvae in honey contaminated by contact with American foulbrood. J. Agricult. Res., 1936, 52, 697-704.
  • 58. Tabera A.E., Libonatti C.C., Diaz M.D., Relevamiento de muestras de mieles procedentes de la zona de Tandil. 2002, in: Boletin Apicola n° 20 (ed. Dirección de Industria Alimentaria). SAGPyA, Argentina, pp. 13-17 (in Spanish).
  • 59. Turkmen N., Sari F., Poyrazoglu E.S., Velioglu Y.S., Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem., 2006, 95, 653-657.
  • 60. Wakita J., Shimada H., Itoh H., Matsuyama T., Matsushita M., Periodic colony formation by bacterial species Bacillus subtilis. J. Phys. Soc. Japan., 2001, 70, 911-919.
  • 61. White J.W, Subers M.H., Schepartz A.I., The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim. Biophys., 1963, 73, 57- 70.
  • 62. White Jr., Physical characteristics of honey. 1975, in: Honey, a comprehensive survey (ed. E. Crane). Heinemann, London, pp. 509-514.
  • 63. White J.W., Spectrophotometric method for hydroxymethylfurfu-ral in honey. J. Assoc. Off. Anal. Chem., 1979, 62, 509.
  • 64. Wong M., Stanton D.W., Nonenzymic browning in kiwifruit juice concentrate systems during storage. J. Food Sci., 1989, 54, 669-673.
  • 65. Zappala M., Fallico B., Arena E., Verzera A., Methods for the determination of HMF in honey: a comparison. Food Contr., 2005, 16, 273-277.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-830865f5-5647-43c2-818f-3c651a2a8c81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.