Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Black smoke and sulphur dioxide in the air as risk factors for dry eye disease

Warianty tytułu
Języki publikacji
Juglone (JU; 5-hydroxy-1,4-naphthoquinone) is an allelochemical synthetized by a wide range of Juglandaceae members. This compound evokes a wide array of detrimental effects in susceptible acceptor plants, including growth inhibition and impairments in the course of biochemical and physiological processes. Therefore, juglone may be considered as a potential bioherbicide in weed control in cereal crops. The purpose of our study was to determine the influence of JU treatment on the content of superoxide anion radical (O2•−) - sensitive and early marker of oxidative stress, and the activity of superoxide dismutase (SOD) - enzyme that functions as a crucial component of the first line antioxidative defense in seed tissues. In the study we tested seeds of four selected plant species of cereal agrosystem: corn poppy (Papaver rhoeas L.), corn cockle (Agrostemma githago L.), spring wheat (Triticum aestivum L., cv. Nawra), and spring oat (Avena sativa L., cv. Maczo). Additionally, the allelopathic influence of JU on seed germination of the studied plant species was investigated. The seeds were exposed to three examined juglone concentrations: 0.001, 0.1, and 10 mM (4% methanoldeionized water solutions), whereas the control seeds were treated with aqueous methanolic solutions (4%). Obtained results evidenced much more severe suppression of germination process and robust generation of superoxide anion radical in the tested weeds, compared to the cereals, and the crucial role of superoxide dismutase in limiting the juglone-induced oxidative stress in the studied seeds.
Słowa kluczowe
Opis fizyczny
  • School of Medicine, University of Nis, Nis, Serbia
  • School of Medicine, University of Nis, Nis, Serbia
  • School of Medicine, University of Nis, Nis, Serbia
  • School of Medicine, University of Nis, Nis, Serbia
  • School of Medicine, University of Nis, Nis, Serbia
  • School of Medicine, University of Nis, Nis, Serbia
  • School of Medicine, University of Nis, Nis, Serbia
  • 1. KATO-NOGUCHI H. Rice allelopathy and momilactone. Pak. J. Weed Sci. Res. 18, 289, 2012.
  • 2. LAM Y., SZE CH.W., TONG Y., NG T.B., TANG S.CH.W., HO J.CH.M., XIANG Q., LIN X., ZHANG Y. Research on the allelopathic potential of wheat. Agricult. Sci. 3, 979, 2012. DOI: 10.4236/as.2012.38119.
  • 3. SHARMA M., SATSANGI G.P. Potential allelopathic influence of sunflower (Helianthus Annuus L.) on germination and growth behavior of two weeds in- vitro condition. Int. J. Biotechnol. Bioeng. Res. 4, 421, 2013.
  • 4. JAWAD M., KHAN N., KHAN H., ZARIN S., ARIFULLAH K.N., ADIL M., REHMAN S., KHAN R. Bio-herbicidal potentials of wheat (Triticum aestivum L.) on some of its major weeds. Pak. J. Weed Sci. Res. 19, 79, 2013.
  • 5. ABDELMIGID H.M., MORSI M.M. Cytotoxic and molecular impacts of allelopathic effects of leaf residues of Eucalyptus globulus on soybean (Glycine max). J. Genet. Engineering Biotech. 15, 297, 2017. DOI: 10.1016/j. jgeb.2017.08.005.
  • 6. LATIF, S., CHIAPUSIO, G., WESTON, L.A. Chapter two − allelopathy and the role of allelochemicals in plant defence. Adv. Bot. Res. 82, 19, 2017. DOI: 10.1016/bs.abr.2016.12.001.
  • 7. KAUR S., KAUR R., CHAUHAN B.S. Understanding crop-weed-fertilizer-water interactions and their implications for weed management in agricultural systems. Crop Prot. 103, 65, 2018. DOI: 10.1016/j.cropro.2017.09.011.
  • 8. MWENDWA J.M., BROWN W.B., WU H., WESTON P.A., WEIDENHAMER J.D., QUINN J.C., WESTON L.A. The weed suppressive ability of selected Australian grain crops; case studies from the Riverina region in New South Wales. Crop Prot. 103, 9, 2018. DOI: 10.1016/j.cropro.2017.09.003.
  • 9. LESZCZYŃSKI B., MATOK H., SYTYKIEWICZ H. Basic aspects of walnut allelopathy: from field to biomolecules. LAP LAMBERT Academic Publishing, Saarbrücken, Germany, 2012.
  • 10. COSMULESCU S., TRANDAFIR I., NOUR V. Seasonal variation of the main individual phenolics and juglone in walnut (Juglans regia) leaves. Pharmaceut. Biol. 52, 575, 2014. DOI: 10.3109/13880209.2013.853813.
  • 11. NOUR V., TRANDAFIR I., COSMULESCU S. Optimization of ultrasound-assisted hydroalcoholic extraction of phenolic compounds from walnut leaves using response surface methodology. Pharmaceut. Biol. 54, 2176, 2016. DOI: 10.3109/13880209.2016.1150303.
  • 12. NOUR V., TRANDAFIR I., COSMULESCU S. HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves. J. Chromatogr. Sci. 51, 883, 2013. DOI: 10.1093/chromsci/bms180.
  • 13. RAO G., SUI J., ZHANG J. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.). Biol. Open 5, 829, 2016. DOI: 10.1242/bio.017863.
  • 14. MATOK H. Effect of selected secondary plant metabolites of walnut (Juglans regia L.) on seed germination. Ph.D. thesis, University of Natural Sciences and Humanities, Siedlce (Poland), 2010 [In Polish].
  • 15. TERZI I., KOCAÇALIŞKAN I. The effects of gibberellic acid and kinetin on overcoming the effects of juglone stress on seed germination and seedling growth. Turk. J. Bot. 34, 67, 2010. DOI: 10.3906/bot-0905-17.
  • 16. BABULA P., VAVERKOVA V., POBORILOVA Z., BALLOVA L., MASARIK M., PROVAZNIK, I. Phytotoxic action of naphthoquinone juglone demonstrated on lettuce seedling roots. Plant Physiol. Biochem. 84, 78, 2014. DOI: 10.1016/j.plaphy.2014.08.027.
  • 17. SYTYKIEWICZ H. Expression patterns of glutathione transferase gene (GstI) in maize seedlings under juglone-induced oxidative stress. Int. J. Mol. Sci. 12, 7982, 2011. DOI: 10.3390/ijms12117982.
  • 18. CHENG F., CHENG Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 6, 1020, 2015. DOI: 10.3389/fpls.2015.01020.
  • 19. HEJL A.M., KOSTER K.L. Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J. Chem. Ecol. 30, 453, 2004.
  • 20. BÖHM P.A.F., BÖHM F.M.L.Z., FERRARESE M.L.L., SALVADOR V.H., SOARES A.R., FERRARESE-FILHO O. Effects of juglone on soybean root growth and induction of lignification. Allelopathy J. 25, 465, 2010.
  • 21. CHI W.-CH., FU S.-F., HUANG T.-L., CHEN Y.-A., CHEN CH.-C., HUANG H.-J. Identification of transcriptome profiles and signaling pathways for the allelochemical juglone in rice roots. Plant Mol. Biol. 77, 591, 2011. DOI: 10.1007/s11103-011-9841-6.
  • 22. KURTYKA R., POKORA W., TUKAJ Z., KARCZ W. Effects of juglone and lawsone on oxidative stress in maize coleoptile cells treated with IAA. AoB Plants 8, plw073, 2016. DOI: 10.1093/aobpla/plw073.
  • 23. PROTOCOL PN-R-65950. Seed material - seed testing methods. The Polish Committee for Standardization, Warsaw (Poland), 1994. [In Polish]
  • 24. SHAH K., KUMAR R.G., VERMA S., DUBEY R.S. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161, 1135, 2001.
  • 25. BEAUCHAMP C.O., FRIDOVICH I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276, 1971.
  • 26. HAO F., ZHAI M-Z., WANG Y., YAN T. Allelopathic effects of juglone on the growth of wheat seedlings and seed germination. Acta Bot. Boreal.-Occid. Sin. 32, 518, 2012.
  • 27. TERZI I. Allelopathic effects of juglone and decomposed walnut leaf juice on muskmelon and cucumber seed germination and seedling growth. Afr. J. Biotech. 7, 1870, 2008.
  • 28. REIGOSA M.J., PAZOS-MALVIDO E. Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J. Chem. Ecol. 33, 1456, 2007.
  • 29. MYLONA P.V., POLIDOROS A.N., SCANDALIOS J.G. Antioxidant gene responses to ROS-generating xenobiotics in developing and germinated scutella of maize. J. Exp. Bot. 58, 1301, 2007. DOI: 10.1093/jxb/erl292.
  • 30. POBORILOVA Z., OHLSSON A.B., BERGLUND T., VILDOVA A., PROVAZNIK I., BABULA P. DNA hypomethylation concomitant with the overproduction of ROS induced by naphthoquinone juglone on tobacco BY-2 suspension cells. Environ. Exp. Bot. 113, 28, 2015. DOI: 10.1016/j.envexpbot.2015.01.005.
  • 31. TOPAL S., KOCAÇALIŞKAN I., ARSLAN O., TEL A.Z. Herbicidal effects of juglone as an allelochemical. Phyton 46, 259, 2007.
  • 32. PRASAD A., KUMAR A., MATSUOKA R., TAKAHASHI A., FUJII R., SUGIURA Y., KIKUCHI H., AOYAGI S., AIKAWA T., KONDO T., YUASA M., POSPÍŠIL P., KASAI S. Real-time monitoring of superoxide anion radical generation in response to wounding: electrochemical study. PeerJ 5, e3050, 2017. DOI: 10.7717/peerj.3050.
  • 33. SHEN Y., LI J., GU R., YUE L., WANG H., ZHAN X., XING B. Carotenoid and superoxide dismutase are the most effective antioxidants participating in ROS scavenging in phenanthrene accumulated wheat leaf. Chemosphere 197, 513, 2018. DOI: 10.1016/j.chemosphere.2018.01.036.
  • 34. SYTYKIEWICZ H. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings. PLoS One 9, e94847, 2014. DOI: 10.1371/journal.pone.0094847.
  • 35. SYTYKIEWICZ H., CHRZANOWSKI G., CZERNIEWICZ P., SPRAWKA I., ŁUKASIK I., GOŁAWSKA S., SEMPRUCH C. Expression profiling of glutathione transferase genes in Zea mays (L.) seedlings infested by cereal aphids. PLoS One 9, e111863, 2014. DOI: 10.1371/journal.pone.0111863.
  • 36. YANG L.Y., YANG S.L., LI J.Y., MA J.H., PANG T., ZOU C.M., HE B., GONG M. Effects of different growth temperatures on growth, development, and plastid pigments metabolism of tobacco (Nicotiana tabacum L.) plants. Bot. Stud. 59, 5, 2018. DOI: 10.1186/s40529-018-0221-2.
  • 37. TAHERI P, KAKOOEE T. Reactive oxygen species accumulation and homeostasis are involved in plant immunity to an opportunistic fungal pathogen. J. Plant Physiol. 216, 152, 2017. DOI: 10.1016/j.jplph.2017.04.018.
  • 38. ARFAOUI A., EL HADRAMI A., DAAYF F. Pretreatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum. Plant Physiol. Biochem. 122, 121, 2018. DOI:10.1016/j.plaphy.2017.11.014.
  • 39. HANAKA A., LECHOWSKI L., MROCZEK-ZDYRSKA M., STRUBIŃSKA J. Oxidative enzymes activity during abiotic and biotic stresses in Zea mays leaves and roots exposed to Cu, methyl jasmonate and Trigonotylus caelestialium. Physiol. Mol. Biol. Plants 24, 1, 2018. DOI: 10.1007/s12298-017-0479-y.
  • 40. LIU G., LIU J., ZHANG C., YOU X., ZHAO T., JIANG J., CHEN X., ZHANG H., YANG H., ZHANG D., DU C., LI J., XU X. Physiological and RNA-seq analyses provide insights into the response mechanism of the Cf- 10-mediated resistance to Cladosporium fulvum infection in tomato. Plant Mol. Biol. 2018. DOI: 10.1007/s11103-018-0706-0. [Epub ahead of print]
  • 41. LIU W., XU F., LV T., ZHOU W., CHEN Y., JIN C., LU L., LIN X. Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants. Sci. Total Environ. 627, 462, 2018. DOI: 10.1016/j.scitotenv.2018.01.021. [Epub ahead of print]
  • 42. NOWICKA B., ŻĄDŁO A., PLUCIŃSKI B., KRUKA J., KUCZYŃSKA P. The oxidative stress in allelopathy: Participation of prenyllipid antioxidants in the response to juglone in Chlamydomonas reinhardtii. Phytochemistry 144, 171, 2017. DOI: 10.1016/j.phytochem.2017.09.012.
  • 43. CHEN S.-Y., CHI W.-C., TRINH N. N., CHENG K.-T., CHEN Y.-A., LIN T.-C., LIN Y.-C., HUANG L.-Y., HUANG H.-J., CHIANG T.-Y. Alleviation of allelochemical juglone-induced phytotoxicity in tobacco plants by proline. J. Plant Interact. 10, 167, 2015. DOI: 10.1080/17429145.2015.1045946.
  • 44. ACHATZ M., MORRIS E.K., MÜLLER F., HILKER M., RILLIG M.C. Soil hypha-mediated movement of allelochemicals: arbuscular mycorrhizae extend the bioactive zone of juglone. Funct. Ecol. 28, 1020, 2014. DOI: 10.1111/1365-2435.12208.
  • 45. ACHATZ M., RILLIG M.C. Arbuscular mycorrhizal fungal hyphae enhance transport of the allelochemical juglone in the field. Soil Biol. Biochem., 78, 76, 2014.
  • 46. SYTYKIEWICZ H., CHRZANOWSKI G., CZERNIEWICZ P., LESZCZYNSKI B., SPRAWKA I., KRZYŻANOWSKI R., MATOK H. Antifungal activity of Juglans regia (L.) leaf extracts against Candida albicans isolates. Pol. J. Environ. Stud. 24, 1339, 2015. DOI: 10.15244/pjoes/34671.
  • 47. ZMANTAR T., MILADI H., KOUIDHI B., CHAABOUNI Y., BEN SLAMA R., BAKHROUF A., MAHDOUANI K., CHAIEB K. Use of juglone as antibacterial and potential efflux pump inhibitors in Staphylococcus aureus isolated from the oral cavity. Microb. Pathog. 101, 44, 2016. DOI: 10.1016/j.micpath.2016.10.022.
  • 48. ARASOGLU T., DERMAN S., MANSUROGLU B., YELKENCI G., KOCYIGIT B., GUMUS B., ACAR T., KOCACALISKAN I. Synthesis, characterization and antibacterial activity of juglone encapsulated PLGA nanoparticles. J. Appl. Microbiol. 123, 1407, 2017. DOI: 10.1111/jam.13601.
  • 49. ARASOGLU T., MANSUROGLU B., DERMAN S., GUMUS B., KOCYIGIT B., ACAR T., KOCACALISKAN I. Enhancement of antifungal activity of juglone (5-hydroxy-1,4-naphthoquinone) using a poly(D,L-lacticco-glycolic acid) (PLGA) nanoparticle system. J. Agric. Food Chem. 64, 7087, 2016. DOI: 10.1021/acs.jafc.6b03309.
  • 50. SHANG X.F., LIU Y.Q., GUO X., MIAO X.L., CHEN C., ZHANG J.X., XU X.S., YANG G.Z., YANG C.J., LI J.C., ZHANG X.S. Application of sustainable natural resources in agriculture: acaricidal and enzyme inhibitory activities of naphthoquinones and their analogs against Psoroptescuniculi. Sci. Rep. 8, 1609, 2018. DOI: 10.1038/s41598-018-19964-0.
  • 51. MALEITA C., ESTEVES I., CHIM R., FONSECA L., BRAGA M.E.M., ABRANTES I., DE SOUSA H.C. Naphthoquinones from walnut husk residues show strong nematicidal activities against the root-knot nematode Meloidogyne hispanica. ACS Sust. Chem. Engin. 5, 3390, 2017. DOI: 10.1021/acssuschemeng.7b00039.
  • 52. ESTEVES I., MALEITA C., FONSECA L., BRAGA M.E.M., ABRANTES I., DE SOUSA H.C. In vitro nematicidal activity of naphthoquinones against the rootlesion nematode Pratylenchus thornei. Phytopathol. Mediterr. 56, 127, 2017. DOI: 10.14601/Phytopathol_ Mediterr-19314.
  • 53. SOŁTYS D., KRASUSKA U., BOGATEK R., GNIAZDOWSKA A. Allelochemicals as bioherbicides – present and perspectives. (In:) Herbicides – Current Research and Case Studies in Use. PRICE A.J., KELTON J.A., editors; Rijeka, Croatia, InTech Publisher; 20, 517, 2013. DOI: 10.5772/56185.
  • 54. DURÁN A.G., CHINCHILLA N., MOLINILLO J.M., MACÍAS F.A. Influence of lipophilicity in O-acyl and O-alkyl derivatives of juglone and lawsone: a structure activity relationship study in the search for natural herbicide models. Pest Manag. Sci. 74, 682, 2018. DOI: 10.1002/ps.4764.
  • 55. MÜLLER A., FINK M. Studies on allelochemical and mineral compounds for sustainable weed control in a pavement filler from brick recycling material. J. Hort. Sci. Biotechnol. 92, 214, 2017. DOI: 10.1080/14620316.2016.1252699.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.