Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 54 | 1 |
Tytuł artykułu

Antioxidant profiles and selected parameters of primary metabolism in Physalis ixocarpa hairy roots transformed by two Agrobacterium rhizogenes strains

Treść / Zawartość
Warianty tytułu
Języki publikacji
We compared the biochemical profiles of Physalis ixocarpa hairy roots transformed with Agrobacterium rhizogenes ATCC and A4 strains with non-transformed root cultures. The studied clones of A4- and ATCC-induced hairy roots differed significantly; the latter showed greater growth potential and greater ability to produce secondary metabolites (tropane alkaloids) and to biotransform hydroquinone to arbutin. We compared glucose content, alanine and aspartate aminotransferase activity, and L-phenylalanine ammonia-lyase activity. We analyzed markers of prooxidant/antioxidant homeostasis: catalase, ascorbate peroxidase, oxidase, glutathione peroxidase and transferase activity, and the levels of ascorbate, glutathione, tocopherol and lipid peroxidation. We found that transformation induced strain-specific regulation, including regulation based on redox signals, determining the rate of allocation of carbon and nitrogen resources to secondary metabolism pathways. Our results provide evidence that A. rhizogenes strain-specific modification of primary metabolites contributed to regulation of secondary metabolism and could determine the ability of P. ixocarpa hairy root clones to produce tropane alkaloids and to convert exogenously applied hydroquinone to pharmaceutically valuable arbutin. Of the studied parameters, glucose content, L-phenylalanine ammonia-lyase activity and alanine aminotransferases activity may be indicators of the secondary metabolite-producing potential of different P. ixocarpa hairy root clones.
Słowa kluczowe
Opis fizyczny
  • Departament of Plant Physiology and Biochemistry, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
  • ALVES MN, SARTORATTO A, and TRIGO JR. 2007. Scopolamine in Brugmansia suaveolens (Solanaceae): Defense, allocation,costs, and induced response. Journal of ChemicalEcology 33: 297–309.
  • BERGIER K, POLASZCZYK B, GAJEWSKA E, WIELANEK M, KROLICKA A, and SKŁODOWSKA M. 2008. Glucosylation of hydroquinoneto arbutin by hairy roots of Physalis ixocarpa.Advances of Agricultural Science Problem Issues 524:339–347.
  • BRADFORD MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.
  • BREHE JE, and BURCH HB. 1976. Enzymatic assay for glutathione. Analytical Biochemistry 74: 315–319.
  • DESIKAN R, REYNOLDS A, HANCOCK JT, and NEILL SJ. 1998. Harpin and hydrogen peroxide both initiate programmedcell death but have differential effects on gene expressionin Arabidopsis suspension cultures. BiochemicalJournal 330: 115–120.
  • DHINDSA RS, PLUMB-DHINDSA P, and THORPE TA. 1981. Leaf senescence: Correlated with increased levels of membranepermeability and lipid peroxidation, anddecreased levels of superoxide dismutase and catalase.Journal of Experimental Botany 32: 93–101.
  • EICH E. 2008. Solanaceae and Convolvulaceae: Secondary Metabolites, 153–160. Springer, Berlin.
  • FORDE BG, and LEA PJ. 2007. Glutamate in plants: metabolism, regulation, and signaling. Journal of ExperimentalBotany 58: 2339–2358.
  • FOYER CH, and NOCTOR G. 2009. Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxidants and Redox Signaling 11:862–905.
  • GAJEWSKA E, and SKŁODOWSKA M. 2009. Nickel-induced changes in nitrogen metabolism in wheat shoots.Journal of Plant Physiology 166: 1034–1044.
  • GIBSON SI. 2005. Control of plant development and gene expression by sugar signaling. Current Opinion in PlantBiology 8: 93–102.
  • GODOY-HERNANDEZ G, and LOYOLA-VARGAS VM. 1991. Effect of fungal homogenate, enzyme inhibitors and osmoticstress on alkaloid content of Catharanthus roseus cellsuspension cultures. Plant Cell Reports 10: 537–540.
  • GRYNKIEWICZ G, and GADZIKOWSKA M. 2008. Tropane alkaloids as medicinally useful natural products and their syntheticderivatives as new drugs. Pharmacological Reports60: 439–463.
  • GUILLON S, TREMOUILLAUX-GUILLER J, KUMAR PATI P, RIDEAU M, and GANTET P. 2006. Harnessing the potential of hairy roots:dawn of a new era. Trends in Biotechnology 24: 403–409.
  • HABIG WH, PABST MJ, and JAKOBY WB. 1974. Glutathione Stransferases. The first enzymatic step in mercapturicacid formation. Journal of Biological Chemistry 249:7130–7139.
  • HOPKINS J, and TUDHOPE GR. 1973. Glutathione peroxidase in human red cells in health and disease. British Journal ofHaematology 25: 563–575.
  • KAMADA H, OKAMURA N, SATAKE M, HARADA H, and SHIMOMURA K. 1986. Alkaloid production by hairy root cultures inAtropa belladonna. Plant Cell Reports 5: 239–242.
  • KAMPFENKEL K, MONTAGU MV, and INZE D. 1995. Extraction and determination of ascorbate and dehydroascorbate fromplant tissue. Analytical Biochemistry 225: 165–167.
  • KERK NM, JIANG K, and FELDMAN LJ. 2000. Auxin metabolism in the root apical meristem. Plant Physiology 122:925–932.
  • KLETZIEN RF, HARRIS PKW, and FOELLMI LA. 1994. Glucose-6- phosphate dehydrogenase: a 'housekeeping' enzyme subjectto tissue-specific regulation by hormones, nutrients,and oxidant stress. FASEB Journal 8: 174–181.
  • KUŹNIAK E, NIEWIADOMSKA E, MISZALSKI Z, and KARPINSKI S. 2009. The role of chloroplasts and redox status in holisticregulation of stress responses in plants. In:Maksymiec W [ed.], Compartmentation of Responses toStresses in Higher Plants, True or False, 163–192.Transworld Research Network.
  • LIU Z, CARPENTER SB, BOURGEOIS WJ, et al. 1998. Variations in the secondary metabolite camptothecin in relation to tissueage and season in Camptotheca acuminata. TreePhysiology 18: 265–270.
  • MARCONI PL, ALVAREZ MA, and PITTA-ALVAREZ SI. 2007. How polyamine synthesis inhibitors and cinnamic acid affecttropane alkaloid production. Applied Biochemistry andBiotechnology 136: 63–75.
  • MEYER AJ. 2008. The integration of glutathione homeostasis and redox signaling. Journal of Plant Physiology 165:1390–1403.
  • MUNNE-BOSCH S, WEILER EW, ALEGRE L, MULLER M, DUCHTING P, and FALK J. 2007. α-Tocopherol may influence cellularsignaling by modulating jasmonic acid levels inplants. Planta 225: 681–691.NAKANO Y, and ASADA K. 1981. Hydrogen peroxide is scavengedby ascorbate-specific peroxidase in spinach chloroplasts.Plant and Cell Physiology 22: 867–880.
  • PEREZ-CASTORENA AL, GARCIA M, MARTINEZ M, and MALDONADO E. 2004. Physalins from Physalis solanaceus. BiochemicalSystematics and Ecology 32: 1231–1234.
  • PIGNOCCHI C, and FOYER CH. 2003. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling.Current Opinion in Plant Biology 6: 379–389.
  • PIGNOCCHI C, KIDDLE G, HERNANDEZ I, FOSTER SJ, ASENSI A, TAYBI T, BARNES J, and FOYER CH. 2006. Ascorbate oxidase-dependent changes in the redox state of theapoplast modulate gene transcript accumulation leadingto modified hormone signaling and orchestration ofdefense processes in tobacco. Plant Physiology 141:423–435.
  • RAMACHANDRA RAO S, and RAVISHANKAR GA. 2002. Plant cell cultures: Chemical factories of secondary metabolites.Biotechnology Advances 20: 101–153.
  • SACHAN N, ROGERS DT, YUN K-Y, LITTLETON JM, and FALCONE DL. 2010. Reactive oxygen species regulate alkaloidmetabolism in undifferentiated N. tabacum cells. PlantCell Reports 29: 437–448.
  • SATTLER SE, MENE-SAFFRANE L, FARMER EE, KRISCHKE M, MUELLER MJ, and DELLAPENNA D. 2006. Nonenzymaticlipid peroxidation reprograms gene expression and activatesdefense markers in Arabidopsis tocopherol-deficientmutants. Plant Cell 18: 3706–3720.
  • SIMON J, GLEADOW RM, and WOODROW IE. 2010. Allocation of nitrogen to chemical defence and plant functional traitsis constrained by soil N. Tree Physiology 30:1111–1117.
  • SKRZYPCZAK-PIETRASZEK E, SZEWCZYK A, PIEKOSZEWSKA A, and EKIERT H. 2005. Biotransformation of hydroquinone toarbutin in plant in vitro cultures – preliminary results.Acta Physiologiae Plantarum 27: 79–87.
  • SMIRNOFF NN, and PALLANCA JE. 1996. Ascorbate metabolism in relation to oxidative stress. Biochemical SocietyTransactions 24: 472–478.
  • STOJAKOWSKI A, and MALARZ J. 2000. Flavonoid production in transformed root cultures of Scutellaria baicalensis.Journal of Plant Physiology 156: 251–254.
  • STRYCHARZ S, and SHETTY K. 2002. Peroxidase activity and phenolic content in elite clonal lines of Mentha pulegium inresponse to polymeric dye R-478 and Agrobacteriumrhizogenes. Process Biochemistry 17: 805–812.
  • STURM A. 1999. Invertase. Primary structures, functions, and roles in plant development and sucrose partitioning.Plant Physiology 121: 1–7.
  • SU B-N, MISICO R, PARK EJ, et al. 2002. Isolation and characterization of bioactive principles of the leaves and stemsof Physalis philadelphica. Tetrahedron 58: 3453–3466.
  • TAYLOR SL, LAMDEN MP, and TAPPEL AL. 1976. Sensitive fluorometric method for tissue tocopherol analysis. Lipids 11: 30–538.
  • TZFIRA T, and CITOVSKY V. 2006. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology.Current Opinion in Biotechnology 17: 147–154.
  • VAN DEN HEUVEL RHH, CURTI B, VANONI MA, and MATTEVI A. 2004. Glutamate synthase: a fascinating pathway from Lglutamineto L-glutamate. Cellular and Molecular LifeSciences 61: 669–681.
  • VANACKER H, SANDALIO LM, JIMENEZ A et al. 2006. Roles for redox regulation in leaf senescence of pea plants grownon different sources of nitrogen nutrition. Journal ofExperimental Botany 57: 1735–1745.
  • VEENA V, and TAYLOR CG. 2007. Agrobacterium rhizogenes: recent developments and promising applications. InVitro Cellular and developmental Biology – Plant 43:383–403.
  • WANG HL, LEE PD, CHEN WL, HUANG DJ, and SU JC. 2000. Osmotic stress induced changes of sucrose metabolismin cultured sweet potato cells. Journal of ExperimentalBotany 51: 1991–1999.
  • WOO S-S, SONG J-S, LEE J-Y, et al. 2004. Selection of high ginsenoside producing ginseng hairy root lines using targetedmetabolic analysis. Phytochemistry 65: 2751–2761.
  • YAGI K. 1976. A simple fluorometric assay for lipoperoxide in blood plasma. Biochemical Medicine 15: 212–216.
  • YU LJ, LAN WZ, CHEN C, YANG Y, and SUN YP. 2005. Importance of glucose-6-phosphate dehydrogenase in taxol biosynthesisin Taxus chinensis cultures. Biologia Plantarum49: 265–268.
  • ZUCKER M. 1965. Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis inpotato tuber tissue. Plant Physiology 40: 779–784
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.