Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |

Tytuł artykułu

Nitrogen removal from piggery wastewater within a sequencing batch reactor using pseudomonas putida


Warianty tytułu

Języki publikacji



This work evaluates the efficiency of ammonium removal from piggery wastewater using a sequencing batch reactor (SBR) inoculated with a newly isolated strain of Pseudomonas putida HJH1. The strain HJH1 not only could survive and remove up to 72.4 mg/L NO₂⁻-N under aerobic conditions, but it also has good performance for simultaneous nitrification and denitrification (SND) with no nitrite accumulation. The SBR system was able to consistently remove: 1) 76.4-100% ammonium nitrogen and 71.4-100% COD from artificial wastewater in stage 1, and 2) 89.2-99.1% ammonium nitrogen and 82.4-100% COD from piggery wastewater in stage 2. During the whole operation, the strain HJH1 predominated in the SBR all the time to function together with other bacteria. Results indicated that the SBR system inoculated with Pseudomonas putida HJH1 can efficiently remove ammonium nitrogen from piggery wastewater, thereby having potential applications for future nitrogen removal.

Słowa kluczowe








Opis fizyczny



  • College of life science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • College of life science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • College of life science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • College of life science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • College of life science, Fujian Agriculture and Forestry University, Fuzhou 350002, China


  • 1. TOMASSO J.R. Comparative toxicity of nitrite to freshwater fishes. Aquat. Toxicol. 8 (2), 129, 1986.
  • 2. JENSEN F.B. Nitrite disrupts multiple physiological functions in aquatic animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 135 (1), 9, 2003.
  • 3. GUO Z., ZHENG Z., GU C., ZHENG Y. Gamma irradiation-induced removal of low-concentration nitrite in aqueous solution. Radiat. Phys. Chem. 77 (6), 702, 2008.
  • 4. BOGOCZEK R., KOCIOŁEK-BALAWEJDER E., STANISŁAWSKA E. A macromolecular oxidant, the N,N-dichlorosulfonamide for removal of residual nitrites from aqueous media. React. Funct. Polym. 66 (6), 609, 2006.
  • 5. CESAR A., ROŠ M. Long-term study of nitrate, nitrite and pesticide removal from groundwater: A two-stage biological process. Int. Biodeterior. Biodegrad. 82, 117, 2013.
  • 6. WANG P., LI X., XIANG M., ZHAI Q. Characterization of efficient aerobic denitrifiers isolated from two different sequencing batch reactors by 16S-rRNA analysis. J. Biosci. Bioeng. 103 (6), 563, 2007.
  • 7. ROBERTSON L.A.,KUENEN J.G. Aerobic denitrification: a controversy revived. Arch. Microbiol. 139 (4), 351, 1984.
  • 8. ZHANG J., WU P., HAO B., YU Z. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 102, 9866, 2011.
  • 9. OZEKI S., BABA I., TAKAYA N., SHOUN H. A novel C1-using denitrifier Alcaligenes sp. STC1 and its genes for copper-containing nitrite reductase and azurin. Biosci. Biotechnol. Biochem. 65 (5), 1206, 2001.
  • 10. KIM J., PARK K., CHO K., NAM S., PARK T., BAJPAI R. Aerobic nitrification-denitrification by heterotrophic Bacillus strains. Bioresour. Technol. 96 (17), 1897, 2005.
  • 11. MENG J., LI J.L., LI J.Z., SUN K., ANTWI P., DENG K.W., WANG C., BUELNA G. Efficiency and bacterial populations related to pollutant removal in an upflow microaerobic sludge reactor treating manure-free piggery wastewater with low COD/TN ratio. Bioresour. Technol. 201, 2016.
  • 12. PATIL S.S., KUMAR M.S., BALL A.S. Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater. Appl. Microbiol. Biotechnol. 87 (1), 2010.
  • 13. PRADO N., OCHOA J., AMRANE A. Zero Nuisance Piggeries: Long-term performance of MBR (membrane bioreactor) for dilute swine wastewater treatment using submerged membrane bioreactor in semi-industrial scale. Water Res. 43 (6), 2009.
  • 14. MENG J., LI J.L., LI J.Z., ANTWI P., DENG K.W., WANG C., BUELNA G. Nitrogen removal from low COD/TN ratio manure-free piggery wastewater within an upflow microaerobic sludge reactor. Bioresour. Technol. 198, 2015.
  • 15. OBAJA D., MACE S., MATA-ALVAREZ J. Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater. Bioresour. Technol. 96 (1), 2005.
  • 16. WANG L.A., ZHU J., MILLER C. The Stability of Accumulating Nitrite from Swine Wastewater in a Sequencing Batch Reactor. Appl. Biochem. Biotechnol. 163 (3), 2011.
  • 17. YAN L.L., LIU Y., REN Y., WANG X.H., LIANG H.J., ZHANG Y. The Effect of pH on the Efficiency of an SBR Processing Piggery Wastewater. Biotechnol. Bioprocess Eng. 18 (6), 2013.
  • 18. SU J.J., CHANG Y.C., HUANG S.M. Ammonium reduction from piggery wastewater using immobilized ammonium-reducing bacteria with a full-scale sequencing batch reactor on farm. Water Sci. Technol. 69 (4), 2014.
  • 19. ZHAO B., HE Y.L., HUGHES J., ZHANG X.F. Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR. Bioresour. Technol. 101 (14), 2010.
  • 20. GUO Y., ZHOU X.M., LI Y.G., LI K., WANG C.X., LIU J.F., YAN D.J., LIU Y.L., YANG D.H., XING J.M. Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis. Biotechnol. Lett. 35 (12), 2013.
  • 21. YANG Y., HUANG S., ZHANG Y., XU F. Nitrogen Removal by Chelatococcus daeguensis TAD1 and Its Denitrification Gene Identification. Appl. Biochem. Biotechnol. 172 (2), 829, 2014.
  • 22. JIANG R., HUANG S., CHOW A., YANG J. Nitric oxide removal from flue gas with a biotrickling filter using Pseudomonas putida. J. Hazard. Mater. 164 (2-3), 432, 2009.
  • 23. KIM M., JEONG S.-Y., YOON S.J., CHO S.J., KIM Y.H., KIM M.J., RYU E.Y., LEE S.-J. Aerobic Denitrification of Pseudomonas putida AD-21 at Different C/N Ratios. J. Biosci. Bioeng. 106 (5), 498, 2008.
  • 24. APHA, Standard Methods for the Examination of Water and Wastewater, 18th ed. 1992, Washington, DC: American Public Health Association.
  • 25. CYPLIK P., JUZWA W., MARECIK R., POWIERSKA-CZARNY J., PIOTROWSKA-CYPLIK A., CZARNY J., DROŻDŻYŃSKA A., CHRZANOWSKI Ł. Denitrification of industrial wastewater: Influence of glycerol addition on metabolic activity and community shifts in a microbial consortium. Chemosphere 93 (11), 2823, 2013.
  • 26. SRINANDAN C.S., D'SOUZA G., SRIVASTAVA N., NAYAK B.B., NERURKAR A.S. Carbon sources influence the nitrate removal activity, community structure and biofilm architecture. Bioresour. Technol. 117, 292, 2012.
  • 27. ADAV S.S., LEE D.J., LAI J.Y. Enhanced biological denitrification of high concentration of nitrite with supplementary carbon source. Appl. Microbiol. Biotechnol. 85 (3), 773, 2010.
  • 28. TAKAYA N., CATALAN-SAKAIRI M.A.B., SAKAGUCHI Y., KATO I., ZHOU Z., SHOUN H. Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl. Environ. Microbiol. 69 (6), 3152, 2003.
  • 29. WAN C., YANG X., LEE D.J., DU M., WAN F., CHEN C. Aerobic denitrification by novel isolated strain using NO₂⁻-N as nitrogen source. Bioresour. Technol. 102, 7244, 2011.
  • 30. FELEKE Z., ARAKI K., SAKAKIBARA Y., WATANABE T., KURODA M. Selective reduction of nitrate to nitrogen gas in a biofilm-electrode reactor. Water Res. 32 (9), 2728, 1998.
  • 31. GILCH S., MEYER O., SCHMIDT I. A soluble form of ammonia monooxygenase in Nitrosomonas europaea. Biol. Chem. 390 (9), 2009.
  • 32. FERNANDEZ M.L., ESTRIN D.A., BARI S.E. Theoretical insight into the hydroxylamine oxidoreductase mechanism. J. Inorg. Biochem. 102 (7), 2008.
  • 33. YANG Y., HUANG S., LIANG W., ZHANG Y., HUANG H., XU F. Microbial removal of NOx at high temperature by a novel aerobic strain Chelatococcus daeguensis TAD1 in a biotrickling filter. J. Hazard. Mater. 203-204, 326, 2012.
  • 34. OBAJA D., MACE S., COSTA J., SANS C., MATA-ALVAREZ J. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresour. Technol. 87 (1), 2003.
  • 35. WANG Y., GUO W.Q., YEN H.W., HO S.H., LO Y.C., CHENG C.L., REN N.Q., CHANG J.S. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresour. Technol. 198, 2015.
  • 36. XIANG M.F., WANG P., LIU X.T., ZHAI Q. Selection and identification of aerobic denitrifiers in denitrification process of wastewater. Food Science and Technology 31, 153, 2006.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.