PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 3 |

Tytuł artykułu

Alternative utilization of protein-rich waste by its conversion into biogas in co-fermentation conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The recommended process conditions and problems reported during anaerobic (co-)fermentation of waste biomass rich in proteins are discussed. Theoretical potentials of the individual biogas components (CH₄, CO₂, NH₃, H₂S) formed during chemical decomposition of aminoacids – feed additives commonly used in feeding animals – are shown, and we discuss side production of odors, e.g., ammonia and organic sulphur compounds. We also suggest the potential alternative production of biohydrogen (a future energy carrier) from specific waste biomass with high protein content.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.1225-1231,ref.

Twórcy

autor
  • Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Unit of Nanocrystalline and Functional Materials and Sustainable Proecological Technologies, Silesian University of Technology in Gliwice
  • Faculty of Chemistry, Department of Chemical Engineering and Process Design, Silesian University of Technology in Gliwice, ks. M. Strzody 7, 44-101 Gliwice, Poland
autor
  • Faculty of Materials and Environmental Sciences, Institute of Environmental Protection and Engineering, Unit of Environmental Processes and Technologies, University of Bielsko-Biala
  • Faculty of Energy and Environmental Engineering, Institute of Water and Wastewater Engineering, Unit of Environmental Chemistry and Membrane Processes, Silesian University of Technology in Gliwice

Bibliografia

  • 1. McINERNEY M.J. Anaerobic hydrolysis and fermentation of fats and proteins. In Biology of Anaerobic Microorganisms; Zehnder A.J.B. Eds., John Wiley and Sons: New York, USA, 373, 1988.
  • 2. BUSWELL A.M., NEAVE S.L. Laboratory studies of sludge digestion. Bulletins of the State Water Survey, 30, 8 Department of Registration and Education, 1930.
  • 3. JAKUBOWSKI T. Waste management – case study of selected district dairy cooperatives in Małopolska region, 12, 199, 2006 [In Polish].
  • 4. ASTALS S., BATSTONE D.J., MATA-ALVAREZ J., JENSEN P.D. Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresource Technology, 169, 421, 2014.
  • 5. BROWN N., GÜTTLER J., SHILTON A. Overcoming the challenges of full scale anaerobic co-digestion of casein whey. Renewable Energy, 96, 425, 2016.
  • 6. CHENG J., DING L., XIA A., LIN R., LI Y., ZHOU J., CEN K. Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation. Bioresource Technology, 179, 13, 2015.
  • 7. BELOSTOTSKIY D.E., ZIGANSHINA E.E., SINIAGINA M., BOULYGINA E.A., MILUYKOV V.A., ZIGANSHIN A.M. Impact of the substrate loading regime and phosphoric acid supplementation on performance of biogas reactors and microbial community dynamics during anaerobic digestion of chicken wastes. Bioresource Technology, 193, 42, 2015.
  • 8. FAGBOHUNGME M.O., DODD I.C., HERBERT B.M.J., LI H., RICKETTS L., SEMPLE K.T. High solid anaerobic digestion: Operational challenges and possibilities. Environmental Technology Innovations, 4, 268, 2015.
  • 9. NIU Q., TAKEMURA Y., KUBOTA K., LI Y.-Y. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience. Waste Management, 43, 114, 2015.
  • 10. SILES J.A., BREKELMANS J., MARTIN M.A., CHICA A.F., MARTIN A. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion. Bioresource Technology, 101, 9040, 2010.
  • 11. ANWAR N., WANG W., ZHANG J., LI Y., CHEN C., LIU G., ZHANG R. Effect of sodium salt on anaerobic digestion of kitchen waste. Water Science and Technology, 73, 1865, 2016.
  • 12. WEBB A.R., HAWKES F.R. The anaerobic digestion of poultry manure: variation of gas yield with influent concentration and ammonium-nitrogen levels. Agricultural Wastes, 14, 135, 1985.
  • 13. KOSTER I.W. Characteristics of the pH-influenced adaptation of methanogenic sludge to ammonium toxicity. Journal of Chemical Technology & Biotechnology, 36, 445, 1986.
  • 14. KOSTER I.W., LETTINGA G. Anaerobic digestion at extreme ammonia concentrations. Biological Wastes, 25, 51, 1988.
  • 15. OMIL F., MENDEZ R., LEMA J.M. Anaerobic treatment of saline wastewaters under high sulphide and ammonia content. Bioresource Technology, 54, 269, 1995.
  • 16. CALLAGHAN F.J., WASE D.A.J., THAYANITHY K., FORSTER C.F. Co-digestion of waste organic solids: batch studies. Bioresource Technology, 67, 117, 1999.
  • 17. BUJOCZEK G., OLESZKIEWICZ J., SPARLING R., CENKOWSKI S. High-solid anaerobic digestion of chicken manure. Journal of Agricultural Engineering Research, 76, 51, 2000.
  • 18. WU G., HEALY M.G., ZHAN X. Effect of the solid content on anaerobic digestion of meat and bone meal. Bioresource Technology, 100, 4326, 2009.
  • 19. YENIGÜN O., DEMIREL B. Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry, 48, 901, 2013.
  • 20. DHAYALAN K., NISHAD FATHIMA N., GNANAMANI A., RADHAVA RAO J., UNNINAIR B., RAMASAMI T. Biodegradability of leather through anaerobic pathway. Waste Management, 27, 760, 2007.
  • 21. WANG M., SUN X.Z., JANSSENB P.H., TANG S.X., TAN Z.L. Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures. Animal Feed Science and Technology, 194, 1, 2014.
  • 22. TAWFIK A., EL-QELISH M. Key factors affecting on biohydrogen production from co-digestion of organic fraction of municipal solid waste and kitchen wastewater. Bioresource Technology, 168, 106, 2014.
  • 23. HUANG W., ZHAO Z., YUAN T., LEI Z., CAI W., LI H., ZHANG Z. Effective ammonia recovery from swine excreta through dry anaerobic digestion followed by ammonia stripping at high total solids content. Biomass and Bioenergy, 90, 139, 2016.
  • 24. NIU Q., QIAO W., QIANG H., HOJO T., LI Y.-Y. Mesophilic methane fermentation of chicken manure at a wide range of ammonia concentration: Stability, inhibition and recovery. Bioresource Technology, 137, 358, 2013.
  • 25. MAO C., FENG Y., WANG X., REN G. Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540, 2015.
  • 26. JAIN S., JAIN S., WOLF I.T., LEE J., TONG Y.W. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renewable and Sustainable Energy Reviews, 52, 142, 2015.
  • 27. RUGHOONUNDUN H., MOHEE R., HOLTZAPPLE M.T. Influence of carbon-to-nitrogen ratio on the mixed-acid fermentation of wastewater sludge and pretreated bagasse. Bioresource Technology, 112, 91, 2012.
  • 28. SAKIEWICZ P., CEBULA J., PIOTROWSKI K., NOWOSIELSKI R., WILK R., NOWICKI M. Application of micro- and nanostructural multifunctional halloysite-based sorbents from Dunino deposit in selected biotechnological processes, Journal of Achievements in Materials and Manufacturing Engineering, 69, 69, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8253dfff-0208-4dff-ad94-587a5105d291
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.