Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2018 | 64 | 2 |

Tytuł artykułu

Phytochemical and growth responses of Mentha piperita to foliar application of biostimulants under greenhouse and field conditions

Treść / Zawartość

Warianty tytułu

Odpowiedź biochemiczna i wzrost Mentha piperita po dolistnym podaniu biostymulatorów w warunkach szklarniowych i polowych

Języki publikacji



The biostimulant products are able to improve quality and quantity of medicinal plants. The comparative effects of biostimulants foliar spraying on peppermint (Mentha piperita L.) were investigated. These studies were done on the basis of randomized complete blocks design in 3 replicates during 2015. In field conditions, the highest leaves and stems dry weight by 400 mg/l chitosan (CH) + 400 mg/l citric acid (CA), essential oil content by 200 mg/l chitosan + 400 mg/l humic acid (HA) + 400 mg/l citric acid and menthol content in 200 mg/l chitosan + 800 mg/l humic acid + 400 mg/l citric acid were observed. In greenhouse conditions, the best results of those mentioned parameters were obtained by 400 mg/l chitosan + 800 mg/l humic acid + 400 mg/l citric acid, 800 mg/l humic acid and 400 mg/l chitosan + 400 mg/l humic acid + 400 mg/l citric acid, respectively.
Produkty biostymulujące mają właściwości podnoszące jakość i plon roślin leczniczych. Porównanie efektów spryskiwania biosymulatorami liści mięty pieprzowej. Badanie przeprowadzono w 2015 r. metodą wybranych losowo kompletnych bloków w trzech powtórzeniach. W warunkach polowych najwyższy plon suchej masy łodyg i liści otrzymano przy zastosowaniu 400 mg/l chitosanu (CH) + 400 mg/l kwasu cytrynowego (CA), zawartość olejku eterycznego przy użyciu 200 mg/l chitosanu + 400 mg/l kwasu humusowego (HA) + 400 mg/l kwasu cytrynowego oraz zawartość mentolu przy zastosowaniu 200 mg/l chitosanu + 800 mg/l kwasu humusowego + 400 mg/l kwasu cytrynowego. W warunkach szklarniowych najlepsze wyniki powyższych parametrów uzyskano, stosując odpowiednio 400 mg/l chitosanu + 800 mg/l kwasu humusowego + 400 mg/l kwasu cytrynowego, 800 mg/l kwasu humusowego oraz 400 mg/l chitosanu + 400 mg/l kwasu humusowego + 400 mg/l kwasu cytrynowego.Stosowanie dolistne efektywnych biostymulantów może podnieść jakość i plon mięty pieprzowej.









Opis fizyczny



  • Department of Horticulture Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
  • Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
  • Agricultural College and Medicinal Plants Research Centre, Shahad University,Tehran, Iran
  • Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran


  • Sustrikova A, Šalamon I. Essential oil of peppermint (Mentha piperita L.) from fields in Eastern Slovakia. Hort. Sci. (Prague), 2004; 31(1):31-36.
  • Turner GW, Gershenzon J, Croteau RB. Distribution of peltate glandular trichomes on developing leaves of peppermint. Plant Physiol. 2000; 124 (2):655-664.
  • Fletcher TS, Laima SK. Environmental factors affecting the accumulation of rosmarinic acid in spearmint (Mentha spicata L.) and peppermint (Mentha piperita L.). The Open Agric J. 2010; 4: 10-16. doi:
  • Aflatuni A. The yield and essential oil content of mint (Mentha ssp.) in northern of Trobothnia. Academic Dissertation, Faculty of Science, University of Oulu, Finland 2005.
  • McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother Res 2006; 20 (8):619-633. doi:
  • Morales MR, Simon JE, Charles DJ. Comparison of essential oil content and composition between field and greenhouse grown genotypes of methyl cinnanmate basil (Ocimum basilicum L.). J Herbs Spices Med Plants 2015; 1(4):25-30. doi:
  • Gulluce M, Sahin F, Sokmen M, Ozer H, Daferara D, Sokmen A, et al. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. Longifolia. Food Chem 2007; 104(4):1449-1456.
  • Rafiee H, NaghdiBadi H, Mehrafarin A, Qaderi A, Zarinpanjeh N, Sekara A, et al. Application of plant biostimulants as new approach to improve the biological responses of medicinal plants. A critical review. J Med Plants 2016; 15(59):6-39.
  • New N, Chandrkrachang S, Stevens WF. Application of chitosan in Myanmar’s agriculture sector, in: Proceedings of the Sixth Asia Pacific Chitin and Chitosan Symposium, May 23–26, The National University of Singapore, Singapore 2004.
  • Ya-jing G, Hu J, Wang X, Shao C. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress, J Zhejiang Univ Sci B 2009; 10(6):427-433. doi:
  • Farouk S, Ghoneem KM, Ali Abeer A. Induction and expression of systematic resistance to downy mildew disease in cucumber plant by elicitors, Egypt J Phytopathol 2008; 1(2):95-111.
  • Farouk S, Mosa AA, Taha AA, Ibrahim Heba M, EL-Gahmery AM. Protective effect of humic acid and chitosan on radish (Raphanus sativus L. var. sativus) plants subjected to cadmium stress. J Stress Physiol Biochem 2011; 7(2):99-116.
  • Ghoname AA, EL-Nemr MA, Abdel-Mawgoud AMR, El-Tohamy WA. Enhancement of sweet pepper crop growth and production by application of biological, organic and nutritional solutions, Res J Agric Biol Sci 2010; 6(7):349-355.
  • Bittelli M, Flury M, Campbell GS, Nichols EJ. Reduction of transpiration through foliar application of chitosan, Agric for Meteorol 2001; 107(3):167-175. doi:
  • Abdel-Mawgoud AMR, Tantawy AS, El-Nemr MA, Sassine YN. Growth and yield responses of strawberry plants to chitosan application, Eur J Sci Res 2010; 39(1):161-168.
  • Pamela C, Louise N, Joseph WK. Agricultural uses of plant biostimulants. Plant Soil 2014. doi:
  • Soccol CR, Vandenberghe LPS, Rodrigues C, Pandey A. New perspectives for citric acid production and application, Food Technol Biotechnol 2006; 44(2):141-149.
  • Lehninger AL. CursoBreve de Bioquimica, Ediciones Omega, Barcelona 1979:214-223.
  • British Pharmacopoeia, HMSO, London 1988; 2: A137 – A:138.
  • Adams RP. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy, Allured Publishing. Carol Stream, IL, USA 2001; pp: 469.
  • Swigar AA, Silverstein RM. Monoterpenes, Aldrich Chemical, Milwaukee 1981.
  • Salwa MA. The influence of biostimulants on the growth and on the biochemical composition of Vicia fabia CV. Giza 3 beans. Roma Biotech Lett 2013; 18 (2):8061-8068.
  • Mahdavi B, Rahimi A. Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eurasia J Biosci 2013; 7:69-76. doi:
  • Abdel-Kader MM, El-Moungy NS, Aly MDE, Lashin SM. Integration of biological and fungicidal alternatives for controlling foliar diseases of vegetables under greenhouse conditions. Int J Agric For 2012; 2(2): 38-48. doi:
  • Bautista-Baños S, Hernández-Lauzardo AN, Velázquez-del Valle MG, Hernández-López M, AitBarka E, Bosquez-Molina E, et al. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities Crop Protect 2006; 25 (2):108-118. doi:
  • Mac Carthy P, Clapp CE, Malcdm RL, Bloom PP. Humic substances in soil and crop sciences. Soil Sci Soc Am Madison 1999. doi:
  • Sheikha SA, Al-Malki FM. Growth and chlorophyll responses of bean plants to chitosan applications. Eur J Sci Res 2011; 50(1):124-134.
  • Abu-Muriefah S. Effect of chitosan on common bean (Phaseolus vulgaris L.) plants grown under water stress conditions, Int Res J Agric Sci Soil Sci 2013; 3(6):192-199.
  • Cho MH, No HK, Prinyawiwatkul W. Chitosan treatments affect growth and selected quality of sunflower sprouts. J Food Sci 2008; 73 (1):570-577. doi: 10.1111/j.1750-3841.2007.00607.x
  • El-Nemr MA, El-Desuki M, El-Bassiony AM, Fawzy ZF. Response of growth and yield of cucumber plants (Cucumis sativus L.) to different foliar application of humic acid and bio-stimulators. Aust J Basic Appl Sci 2012; 6(3):630-637.
  • Yang CM, Wang MH, Lu YF, Chang IF, Chou CH. Humic substances affect the activity of chlorophyllase. J Chem Ecol 2004; 30(5):1057-1065.
  • Said-Al Ahl HAH, El Gendy AG, Omer EA. Humic acid and indole acetic acid affect yield and essential oil of dill grown under two different locations in Egypt. J Pharm Sci Res 2016; 8(7):504-606.
  • Radmanesh E, NaghdiBadi H, Hadavi E, Mehrafarin A. Shoot growth, Gamma-terpinene and essential oil content of Satureja hortensis L. in response to foliar application of FeSO4 and citric acid. J Med Plants 2015; 14 (53):45-57. doi:
  • Loschke DC, Hadwiger LA, Wagoner W. Comparison of mRNA populations coding for phenylalanine ammonialyase and other peptides from pea tissue treated with biotic and abiotic phytoalexin inducers. Physiol Plant Pathol 1983; 23(1):163-173.
  • El-Gohary AE, El-Sherbeny SE, Ghazal GMEM, Khalid KA, Hussein MS. Evaluation of essential oil and monoterpenes of peppermint (Mentha piperita L.) under humic acid with foliar nutrition. J Mater Environ Sci 2014; 5(6):1885-1890.
  • Asghari-zakaria R, Maleki-zanjani B, Sedghi E. Effect of in vitro chitosan application on growth and minituber yield of Solanum tuberosum L. Plant Soil Environ 2009; 55(6):252-256.
  • Bagheri S, Davazdah emami S, Minooyi Moghadam J. Variation in growth characteristics, nutrient uptake, and essential oil content in three mycorrhizal genotype of Mentha spicata L. Int J Sci Res Knowl 2015; 3 (3): 067-076. doi:
  • Naeem M, Idrees M, Aftab T, Khan Moinuddin MMA, Varshney L. Depolymerised carrageenan enhances physiological activities and menthol production in Mentha arvensis L. Carbohydr Polym 2012; 87 (2): 1211-1218. doi:

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.