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Summary 

In this paper, we propose two approaches to the construction of nonlinear principal compo-
nents. By the use of kernel functions, one can efficiently compute nonlinear principal components 
in high-dimensional feature space, related to input space by some nonlinear transformation. 
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1. Introduction 

Classical principal component analysis (PCA) (Hotelling, 1933) was intro-
duced as a technique for deriving a reduced set of orthogonal linear projections 
of a single collection of correlated variables X = (X1, X2,…, Xp)

T, where the 
projections are ordered by decreasing variances. Principal component analysis 
is used, for example, in lossy data compression, pattern recognition, and image 
analysis. In addition to reducing dimensionality, principal component analysis 
can be used to discover important features of the data. Discovery in principal 
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component analysis takes the form of graphical displays of the principal compo-
nent scores. The first few principal component scores can reveal whether most of 
the data actually live on a linear subspace of Rp, and can be used to identify out-
liers, distributional peculiarities, and clusters of points. The last few principal 
component scores show those linear projections of X = (X1, X2,…, Xp)

T that have 
the smallest variance; any principal component with zero or near-zero variance 
is virtually constant, and hence can be used to detect collinearity, as well as 
outliers that appear and alter the perceived dimensionality of the data.  

The linear projection method can be extremely useful in discovering low-
dimensional structure when the data actually lie in a linear (or approximately 
linear) lower-dimensional subspace (called a manifold) M of input space Rp. 
But what can we do if we know or suspect that the data actually lie on a low-
dimensional nonlinear manifold, whose structure and dimensionality are both 
assumed unknown? We can then construct the nonlinear principal components. 
In Section 2, the classical principal components are presented. In Section 3 we 
show two approaches to the construction of nonlinear principal components. In 
Section 4 we present an example. 

2. Classical principal component analysis 

Assume that the random p-vector X = (X1, X2,…, Xp)
T has mean µµµµ and 

(p×p) covariance matrix ΣΣΣΣ. PCA seeks to replace the set of p (unordered and 
correlated) input variables, X1, X2,…, Xp by a (potentially smaller) set of t (or-
dered and uncorrelated) linear projections,  ξ1,…, ξt (t ≤ p), of the input vari-
ables,  

 ξj = bj
T X = bj1X1 +…+ bjpXp , j = 1, 2,…, t;  (2.1) 

where we minimize the loss of information due to replacement. 
In PCA, “information” is interpreted as the “total variation” of the original 

input variables,  

( )∑ =
=

p

1j
jXVar  tr (ΣΣΣΣ). 

From the spectral decomposition theorem, we can write  
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ΣΣΣΣ = U ΛΛΛΛ UT,  UT U  = I p, 

where the diagonal matrix ΛΛΛΛ has as diagonal elements the eigenvalues {λj} of ΣΣΣΣ, 
and the columns of U are the eigenvectors of ΣΣΣΣ. Thus the total variation is  

tr (ΣΣΣΣ) = tr (ΛΛΛΛ) = ∑ λ
=

p

1j
j . 

The jth coefficient vector, bj = (bj1,…,bjp)
T, is chosen so that: 

• The first t linear projections ξj, j = 1, 2,…, t, of X are ranked in 
importance through their variances {Var(ξj)}, which are listed in 
decreasing order of magnitude: Var(ξ1) ≥ Var(ξ2) ≥ … ≥ Var(ξt). 

• ξj is uncorrelated with all ξk, k < j. 
The linear projections (2.1) are then known as the first t principal components 
of X. 

In practice, we estimate the principal components using N independent ob-
servations, {X i, i =1, 2,…, N}, on X. We estimate µµµµ by 

.Nˆ
N

1i
i

1
∑==
=

− XXµ
 

Let X ic = X i – X , i = 1, 2,…, N, and set 

















=
T
Nc

T
c1

c

X

X

X L to be an (N×p) matrix. 

We estimate ΣΣΣΣ by the sample covariance matrix,  

 .)1N(ˆ
c

T
c

1 XXS −−==ΣΣΣΣ  (2.2) 

The ordered eigenvalues of ΣΣΣΣ̂  are denoted by 0ˆ...ˆˆ
p21 ≥λ≥≥λ≥λ , and 

the eigenvector associated with the jth largest sample eigenvalue jλ̂ is the jth 

sample eigenvector jv̂ , j = 1, 2,…, p.    

The jth sample PC score of X is given by  

 ic
T
jij ˆˆ Xv=ξξξξ

, (2.3) 
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where X ic = X i – X , i = 1, 2,…, N, j = 1, 2,…, p. 
A sample measure of how well the first t principal components represent 

the p original variables is given by the statistic 

p1

t1

ˆ...ˆ

ˆ...ˆ

λ++λ
λ++λ

 

which is the proportion of the total sample variation that is explained by the 
first t sample principal components. 

It is hoped that the sample variances of the first few sample PCs will be 
large, whereas the rest will be small enough for the corresponding set of sample 
PCs to be omitted. A variable that does not change much (relative to other va- 
riables) in independent measurements may be treated approximately as a con-
stant, and so omitting such low-variance sample PCs and focusing exclusively 
on the high-variance sample PCs is therefore a convenient way of reducing the 
dimensionality of the data set. 

For diagnostic and data analytic purposes, it is usual to plot the first sample 

PC scores against the second sample PC scores, ( )2i1i
ˆ,ˆ ξξξξξξξξ , where ijξ̂ξξξ , is given 

by (2.3), i = 1,…, N, j = 1, 2. 

3. Nonlinear principal component analysis 

An approach that generalizes linear PCA is given by Kernel PCA (Scholkopf, 
Smola, and Muller, 1996). This is an application of so-called kernel methods. 

Let X ic = X i – X ∈Rp, i = 1, 2,…, N, be the input centered data points. We 
can think of kernel PCA as a two-step process: 

1. Nonlinearly transform the ith input center data point X ic ∈Rp into point 
Φ(X ic) in an NH-dimensional feature space H (the Hilbert space), where  

ΦΦΦΦ(X ic) = (Φ1(X ic),…,
HNΦ (X ic))

T ∈ H, i = 1, 2,…, N. 

The transformation ΦΦΦΦ : Rp → H is called a feature transformation, and 
each of the {Φj} is a nonlinear transformation. 
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2. Given ΦΦΦΦ(X1c),…, ΦΦΦΦ(XNc) ∈ H, solve a linear PCA problem in feature 
space H, which has a higher dimensionality than that of the input space 
(i.e. NH > p). 

 
Fig. 1. Original data in the plane. The data cannot be separated linearly. 

 
Consider the data presented in Figure 1. Let X ic = (Xic1, Xic2)

T, and define  
ΦΦΦΦ : R2 → R3 by  

ΦΦΦΦ(X ic) = ΦΦΦΦ(X ic1, Xic2) = ( 2
2ic2ic1ic

2
1ic X,XX2,X ) = (zi1, zi2, zi3)

T. 

With this ΦΦΦΦ, a difficult nonlinear classification problem in R2 is converted 
to a standard linear classification task in R3 (see Figure 2). 

Let X ic = (Xic1, Xic2)
T and Y ic = (Yic1, Yic2)

T be two vectors in input space R2, 
and consider the transformation to R3 used earlier. Let ΦΦΦΦ(X ic) and ΦΦΦΦ(Y ic) be two 
feature vectors generated by X ic and Y ic. Now look at the inner product  
ΦΦΦΦT(X ic) ΦΦΦΦ(Y ic) in feature space. It is  

 ΦΦΦΦT(X ic) ΦΦΦΦ(Y ic) = ( 2
2ic2ic1ic

2
1ic X,XX2,X )  ( 2

2ic2ic1ic
2
1ic Y,YY2,Y )T =  

 
                      = (Xic1Y ic1 + Xic2Y ic2)

2 = ( ic
T
icYX )2 = k(X ic, Yic).  (3.1) 
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Fig. 2. A three-dimensional representation of the pluses and minuses. 

 
Equation (3.1) shows how an inner product based on ΦΦΦΦ converts to a func-

tion of the two inputs. Since choosing an inner product and computing with it in 
feature space can quickly become computationally infeasible, it would be desi- 
rable to choose a function k, called a kernel, so as to summarize the geometry of 
feature space vectors and ignore ΦΦΦΦ entirely. 

Now the kernel trick can be applied. Suppose a function k(⋅,⋅) : Rp×Rp → R 
operating on input space can be found such that the feature space inner products 
are computed directly through k as in (3.1). Then explicit use of  ΦΦΦΦ has been 
avoided, and yet results can be obtained as if ΦΦΦΦ were used. This direct computa-
tion of feature space inner products without actually explicitly manipulating the 
feature space vectors themselves is known as the kernel trick. 

The existence of the transformation ΦΦΦΦ : Rp → H such that 

ΦΦΦΦT(X ic)ΦΦΦΦ(Y ic) = k(X ic, Yic) 

guarantees the following theorem. 
 
Theorem 1 (Mercer, 1909). Let  

k : Rp×Rp → R 

be a bivariate symmetric continuous real-valued function. Then there exists a 
transformation   ΦΦΦΦ : Rp → H such that  
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k(X ic
 ,Y ic) = ΦΦΦΦT(X ic)ΦΦΦΦ(Y ic) 

if and only if the matrix K  = (kij) is nonnegative definite, where kij = k(X ic
 , X jc), 

i, j = 1,…,N. 
The matrix K  is known as the kernel Mercer’s matrix. For a given bivariate 

function k, verifying the conditions above might not be easy. In practice, there 
exist many functions that have been shown to be valid kernels, and fortunately 
many of them deliver good performance on real-world data. 

A short annotated list is presented in Table 1. 
 

Table 1. Kernel functions 
 

Kernel k(x, y) 

Homogeneous polynomial kernel (xT y)d, d is an integer 

Inhomogeneous polynomial kernel (xT y + c)d, c > 0 

Gaussian radial basis function ( )2
cexp yx −− , c > 0 

Laplacian ( )yx −− cexp , c > 0 

 
In order to carry out linear PCA in feature space so that it mimics the stan-

dard treatment of PCA (as carried out in input space), we have to find eigen- 
values γ ≥ 0 and nonzero eigenvectors u ∈ H of the estimated covariance matrix 

C = ( ) ( )ic
T

N

1i
ic1N

1
XX ΦΦΦΦΦΦΦΦ∑

− =     
(3.2) 

of the centered and nonlinearly transformed input vectors. The eigenequation 
Cu = γu, where u is the eigenvector corresponding to the eigenvalue γ ≥ 0 of C, 
can be written in an equivalent form as  

 ΦΦΦΦT(X ic) Cu = γ ΦΦΦΦT(X ic)u , i = 1, 2,…, N. (3.3) 

Because 

Cu = ( ) ( )ic
T

N

1i
ic1N

1
XX ΦΦΦΦΦΦΦΦ∑

− =
u 

all solutions u with nonzero eigenvalue γ are contained in the span of 
ΦΦΦΦ(X1c),…, ΦΦΦΦ(XNc). Hence there exist coefficients, αk, k = 1, 2,…, N, such that  
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 u = ( )∑
=

N

1k
kckα XΦΦΦΦ . (3.4) 

Substituting (3.4) for u in (3.3), we get that  

      ( ) ( ) ( ) ( ) ( ) ( )∑=∑∑
− ===

N

1k
kcic

T
kjckc

T
N

1k
kc

N

1j
ic

T
j αγα

1N

1
XXXXXX ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ , (3.5) 

for all i = 1, 2,…, N. 
The eigenequation (3.5) can be written as K 2 αααα = N γ K  αααα, where  
αααα = (α1,…, αN)T, or as   

 K2 αααα = γ~ K  αααα, (3.6) 

where γ~ = (N - 1) γ, K  = (kij) and kij = k(X ic, X jc) = ΦΦΦΦT(X ic) ΦΦΦΦ(X jc),  
i, j = 1, 2,…, N. 
To find solutions of (3.6), we solve the eigenvalue problem  

 K αααα = γ~ αααα (3.7) 

for nonzero eigenvalues. Clearly, all solutions of (3.7) do satisfy (3.6). More-
over, it can be shown that any additional solutions of (3.7) do not make a differ-
ence in the expansion (3.4) and thus are not of interest to us. 
Let us consider the problem of nonlinear principal components from the stand-
point of classical principal components. 
The classical principal components are determined from the sample covariance 
matrix S of the form (2.2). The ordered eigenvectors of S, p21 ˆ,...,ˆ,ˆ vvv , satisfy 

the equations 

 jjj ˆλ̂ˆ vvS = , j = 1, 2,…, p. (3.8) 

Equations (2.2) and (3.8) together lead to  

 jjjc
T
c

1 ˆˆˆ)1N( vvXX λλλλ=− −

, j = 1, 2,…, p. (3.9) 
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We will put j
T
cjˆ ααααXv = , j = 1, 2,…, p, into (3.9) and reparameterize the eigen-

value problem in terms of ααααj. For j = 1, 2,…, p, this leads to 

j
T
cjj

T
cc

T
c β̂ αααααααα XXXX =

, 

where jj λ̂)1N(β̂ −= , j = 1, 2,…, p. 

If we left-multiply both sides by Xc, we get  

j
T
ccjj

T
cc

T
cc β̂ αααααααα XXXXXX = , j = 1, 2,…, p. 

Let us observe that  

[ ]Ncc1
T
Nc

T
c1

T
cc ,...,XX

X

X

XX
















= L

 

= (X ic
T X jc)

 

is an N×N matrix of pairwise inner products. 
Therefore, if a linear algorithm can be shown to depend on the centered 

data matrix Xc only through an N×N matrix XcXc
T of pairwise inner products, 

then it can be easily “kernelized” – we simply replace XcXc
T by the kernel Mer-

cer’s matrix K . 
Hence, the eigenequations (3.2) can be written as 

K 2 αααα = β̂ K αααα 

and are identical to (3.6). 
Since the linear algorithm of principal components depends on the centered 

data matrix Xc only through the matrix XcXc
T of pairwise inner products, it can 

be easily transformed to a nonlinear algorithm by replacing XcXc
T by the kernel 

Mercer’s matrix K . 
Once we obtain the s'ˆ iαααα , suppose we would like to project the data Xc onto a 

few leading principal components, for example  Xc jv̂ . We immediately find that 

Xc jv̂ = jj
T
cc ˆˆ αααααααα KXX = . 
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Hence it becomes clear that both finding and projecting onto principal 
components depends on just the inner products, and PCA can be “kernelized” 
easily. 

4. Example 

One hundred points were generated from a uniform distribution in a circle 
of radius 1, one hundred points from a uniform distribution in a circle of radius 
2, and a hundred points from a uniform distribution in a circle of radius 4. In the 
last two cases, Gaussian noise with standard deviation 0.25 was added to each 
point. The data are shown in Figure 3. 

 

 
Fig. 3. The original data 

 

 
The data being spherical, all directions have equal variance and there are 

no meaningful principal components in the traditional sense. We construct the 
kernel Mercer’s matrix K  = (kij), where 

kij = k(X ic, Yic) = ( )2

iciccexp YX −− , c > 0, i, j = 1, 2, …, 300. 
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Since the kernel function k depends on the parameter c, all sizes K , α and λ 
depend on this parameter. 
The graph of ( ) ( )∑

j
j1 cλ/cλ  and ( ) ( )∑

j
j2 cλ/cλ  is shown in Figure 4. 

 

 
Fig. 4. The graph of ( ) ( )∑

j
j1 cλ/cλ  and ( ) ( )∑

j
j2 cλ/cλ  

 

 
Fig. 5. Projection onto the first two kernel principal components 
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The function 

( ) ( )
( )∑

+

j
j

21

cλ

cλcλ

 

has a maximum at the point c = 0.017. 
Using a Gaussian kernel with c = 0.017 in place of all the inner products, the 
first kernel principal direction obtained gives a meaningful order of how far 
each observation is away from the origin (see Figure 5).  

In this case, kernel PCA has successfully discovered the (only) underlying 
pattern in the data, one that is impossible to detect with classical PCA. 
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NIELINIOWE SKŁADOWE GŁÓWNE 

Streszczenie 

W artykule tym proponujemy dwa podejścia do konstrukcji nieliniowych składowych głów-
nych. Nieliniowe składowe główne moŜna efektywnie skonstruować w nowej przestrzeni cech 
duŜego wymiaru uzyskanej z przestrzeni wyjściowej za pomocą przekształcenia nieliniowego. 

Słowa kluczowe: nieliniowe składowe główne, funkcje jądrowe 
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