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Summary

In this paper, we propose two approaches to thetawtion of nonlinear principal compo-
nents. By the use of kernel functions, one canieffity compute nonlinear principal components
in high-dimensional feature space, related to irgpaice by some nonlinear transformation.

Key words and phrasesnonlinear principal component analysis, kernekfions
Classification AMS 2010 62H25

1. Introduction

Classical principal component analysis (PCA) (Hotg|] 1933) was intro-
duced as a technique for deriving a reduced setthbgonal linear projections
of a single collection of correlated variabs= (X, X,..., Xp)T, where the
projections are ordered by decreasing variancescipal component analysis
is used, for example, in lossy data compressiotterparecognition, and image
analysis. In addition to reducing dimensionalityinpipal component analysis
can be used to discover important features of #ta.ddiscovery in principal
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component analysis takes the form of graphicallayspof the principal compo-
nent scores. The first few principal component esaan reveal whether most of
the data actually live on a linear subspace "pfaRd can be used to identify out-
liers, distributional peculiarities, and clusterfspwints. The last few principal
component scores show those linear projectioné of(Xy, X,,..., Xp)T that have
the smallest variance; any principal component &é&lo or near-zero variance
is virtually constant, and hence can be used tedtlatollinearity, as well as
outliers that appear and alter the perceived diinaalty of the data.

The linear projection method can be extremely Usefdiscovering low-
dimensional structure when the data actually li@ilinear (or approximately
linear) lower-dimensional subspace (called a méaif of input space R
But what can we do if we know or suspect that tadctually lie on a low-
dimensional nonlinear manifold, whose structure dimdensionality are both
assumed unknown? We can then construct the nonlpreecipal components.
In Section 2, the classical principal componenes@esented. In Section 3 we
show two approaches to the construction of nontipeiacipal components. In
Section 4 we present an example.

2. Classical principal component analysis

Assume that the random p-vect¥r= (Xy, X,..., Xp)T has mearn and
(pxp) covariance matrif. PCA seeks to replace the set of p (unordered and
correlated) input variables,; XX,,..., X, by a (potentially smaller) set of t (or-
dered and uncorrelated) linear projectiorts,..., & (t < p), of the input vari-
ables,

&§=b' X =hXs+...+ B X,,j=1,2,..., (2.1)

where we minimize the loss of information due tplaeement.
In PCA, “information” is interpreted as the “totadriation” of the original
input variables,

> Var(X )= 1 (5).
=

From the spectral decomposition theorem, we carewri
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I=UAU", U"U =1,

where the diagonal matrix has as diagonal elements the eigenvaldgof Z,
and the columns obl are the eigenvectors &. Thus the total variation is

tr(@)=tr(\)= A, .
j=1

The jth coefficient vecto; = (b,...,b,)", is chosen so that:

» The first t linear projectiong;, j = 1, 2,..., t, ofX are ranked in
importance through their variances {VgJ}, which are listed in
decreasing order of magnitude: V@)= Var(&.) = ... = Var(&y).

» ¢jis uncorrelated with afl, k <.

The linear projections (2.1) are then known asfittsé¢ t principal components
of X.

In practice, we estimate the principal componestagiN independent ob-

servations, X;, i =1, 2,..., N}, onX. We estimate by

A ~, _1N
pn=X=N"YX,.
i=1
_ X
LetXi =Xi— X,i=1,2,...,N,and seX_  =| --- |to be an (Nxp) matrix.
X e

We estimat& by the sample covariance matrix,

- _C — -1y T
>=S=(N-1)7X!X.. 2.2)

The ordered eigenvalues & are denoted b}f\l 2 )A\Z 2.2 )A\p >0, and
the eigenvector associated with the jth Iargestp@raigenvaluef\ ;is the jth

sample eigenvecto?lj J=1,2,...,p.
The jth sample PC score Xfis given by

- T
Eij - Vj xic’ (2.3)
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whereX;. = X; —Y, i=1,2,...N,j=1,2,...,p.
A sample measure of how well the first t principaimponents represent
the p original variables is given by the statistic

> >
>H >

Lt
Pt
which is the proportion of the total sample vagatithat is explained by the
first t sample principal components.

It is hoped that the sample variances of the faget sample PCs will be
large, whereas the rest will be small enough ferdbrresponding set of sample
PCs to be omitted. A variable that does not changeh (relative to other va-
riables) in independent measurements may be tregtpbximately as a con-
stant, and so omitting such low-variance sample &@ikfocusing exclusively
on the high-variance sample PCs is therefore aeroamt way of reducing the
dimensionality of the data set.

For diagnostic and data analytic purposes, it i plot the first sample

PC scores against the second sample PC sc(irigséiz), Wherei is given
by (2.3),i=1,....,N,j=1,2.

ij

3. Nonlinear principal component analysis

An approach that generalizes linear PCA is giverKbynel PCA (Scholkopf,
Smola, and Muller, 1996). This is an applicatiorsofcalled kernel methods.
Let X, =X;— XOR", i =1, 2,..., N, be the input centered data poiws.
can think of kernel PCA as a two-step process:
1. Nonlinearly transform the ith input center datarpa{,; OR into point
®(X;c) in an Ny-dimensional feature space H (the Hilbert spacbgre

D(Xic) = (@1(Xic), -, P, Xie)) O H,i1=1,2,...,N.

The transformation®d : R° — H is called a feature transformation, and
each of the ¢} is a nonlinear transformation.
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2. Given ®(Xyo),..., P(Xne) O H, solve a linear PCA problem in feature
space H, which has a higher dimensionality thah dh¢éhe input space

(i.,e. Ny > p).
X2
+ +
+ B L
+ -7 T+
N _\;' > X1
+ e T |- T+
RS
+
+

Fig. 1. Original data in the plane. The data cannot barségd linearly.

Consider the data presented in Figure 1.Xiet (X1, Xic2)', and define
®: R - Rby

D(Xic) = P(Xic1, Xic2) = (Xiiy\/ixiclxiczlxiiz) = (2, 72, 7).

With this @, a difficult nonlinear classification problem if B converted
to a standard linear classification task h(&ee Figure 2).

Let Xic = (Xicw, Xic2)" @andYic = (Yiew, Yico)" be two vectors in input spacé,R
and consider the transformation tdiRed earlier. Le®(X;.) and®(Y.) be two
feature vectors generated b§. and Y. Now look at the inner product
®'(Xi) D(Yo) in feature space. It is

qJT(Xic) D(Yie) = (Xiiv‘/zx ic1xic2'Xi2c2) (Yi§1’\/§Yic1Yic2'Yi§2 )T =

= (%Yier + Xie2Yied)” = (X Yy )* = KXic, Yi)- (3.1)
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Z3

> Z2

4|
Fig. 2. A three-dimensional representation of the plasesminuses.

Equation (3.1) shows how an inner product base® @onverts to a func-
tion of the two inputs. Since choosing an innedpici and computing with it in
feature space can quickly become computationafgasible, it would be desi-
rable to choose a function k, called a kernel,sstoasummarize the geometry of
feature space vectors and igndrentirely.

Now the kernel trick can be applied. Suppose atfan&(): R°xR® - R
operating on input space can be found such thdettare space inner products
are computed directly through k as in (3.1). Theplieit use of ® has been
avoided, and yet results can be obtained dsvifere used. This direct computa-
tion of feature space inner products without adyustplicitly manipulating the
feature space vectors themselves is known as thelkigick.

The existence of the transformatidn R’ - H such that

O'(Xie)P(Yic) = kXic, Yic)
guarantees the following theorem.
Theorem 1(Mercer, 1909). Let
k: RxR’ - R

be a bivariate symmetric continuous real-valueccfiom. Then there exists a
transformation @ : R’ - H such that
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k(Xic ,Yic) = q)T(xic)q)(Yic)

if and only if the matriXX = (k;) is nonnegative definite, wherg & k(Xic, Xjc),
i,j=1,...,N.

The matrixK is known as the kernel Mercer’'s matrix. For a gibevariate
function k, verifying the conditions above mighttrio® easy. In practice, there
exist many functions that have been shown to biel kairnels, and fortunately
many of them deliver good performance on real-wdeth.

A short annotated list is presented in Table 1.

Table 1 Kernel functions

Kernel k(x,y)
Homogeneous polynomial kernel (x"y)Y, d is an integer
Inhomogeneous polynomial kernel x"y+cf,c>0
Gaussian radial basis function ex;{— cfx - sz), c>0
Laplacian exp(— CHX -y ) c>0

In order to carry out linear PCA in feature spagetst it mimics the stan-
dard treatment of PCA (as carried out in input spawe have to find eigen-
valuesy = 0 and nonzero eigenvectars] H of the estimated covariance matrix

1 N
c=L Lalx,)or(x,) 32)
N-1i=
of the centered and nonlinearly transformed inpedters. The eigenequation

Cu =vyu, whereu is the eigenvector corresponding to the eigenwat® of C,
can be written in an equivalent form as

@' (X)) Cu=y®d'(Xu,i=1,2,...,N. (3.3)

Because

cu=—1_So(x,)o"(X,)u

=12

all solutions u with nonzero eigenvalug are contained in the span of
D(X10),..., P(Xne)- Hence there exist coefficients, k = 1, 2,..., N, such that
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u :glakq)(xkc)' (3.4)

Substituting (3.4) fou in (3.3), we get that

N

q)(xkc T(xkc)q)(xjc):Yzak¢T(Xic)¢(xkc)1 (3.5)

1 k=1

1 N
N —11-2::1%(') (xic)

Mz

=

foralli=1,2,..., N.
The eigenequation (3.5) can be written 8 a = N y K a, where
a=(0y...,ay)", or as

K?2a =YK a, (3.6)

where y= (N - 1)y, K = (k) and k = K(Xi;, Xic) = @'(Xic) ®(X),
ihj=1,2,.., N.
To find solutions of (3.6), we solve the eigenvatueblem

Ka=ya (3.7)

for nonzero eigenvalues. Clearly, all solutiong&1f7) do satisfy (3.6). More-
over, it can be shown that any additional solutioh&3.7) do not make a differ-
ence in the expansion (3.4) and thus are not efést to us.

Let us consider the problem of nonlinear principanponents from the stand-
point of classical principal components.

The classical principal components are determineich the sample covariance
matrix S of the form (2.2). The ordered eigenvector§ot/,, V,,...,V , satisfy

the equations

Sy =A95,i=1,2...,p. (3.8)

(N-D?XIX 0, =29, j=1,2...,p. (3.9)
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We will put \7j = XI(xj , 1 =1, 2,..., p, into (3.9) and reparameterize élgen-
value problem in terms @f;. For j =1, 2,..., p, this leads to

XIX X, =B XIa,

Where[ASj =(N —1)71j,j =1,2,...,p.
If we left-multiply both sides b¥,, we get

XXX Xoa, =B X Xla;j=1,2...p.
Let us observe that
-
X1
XCX-(IZ- = .- [XIC""’XNC] = (XicTch)
xT
Nc

is an NxN matrix of pairwise inner products.

Therefore, if a linear algorithm can be shown tpedal on the centered
data matrixX. only through an NxN matriX.X.' of pairwise inner products,
then it can be easily “kernelized” — we simply s@XX.' by the kernel Mer-
cer’'s matrixK.

Hence, the eigenequations (3.2) can be written as

and are identical to (3.6).

Since the linear algorithm of principal componadpends on the centered
data matrixX. only through the matriXX.' of pairwise inner products, it can
be easily transformed to a nonlinear algorithmdplacingX.X.' by the kernel
Mercer's matrixK.

Once we obtain thel, 's, suppose we would like to project the détaonto a
few leading principal components, for examplgV ;- We immediately find that

~ — T/\ — ~
Xch— chcaj —Kal—.
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Hence it becomes clear that both finding and ptijgconto principal
components depends on just the inner products P&#l can be “kernelized”

easily.

One hundred points were generated from a unifostridution in a circle
of radius 1, one hundred points from a uniformrdistion in a circle of radius
2, and a hundred points from a uniform distributiom circle of radius 4. In the
last two cases, Gaussian noise with standard dmvi@t25 was added to each

4. Example

point. The data are shown in Figure 3.
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The data being spherical, all directions have egaaknce and there are
no meaningful principal components in the tradiéibsense. We construct the

Fig. 3. The original data

kernel Mercer’s matriX = (k;), where

Kij = kK(Xic, Yic) = eXF{‘C"Xic ‘Yic"Z), c>0,i,j=1,2, ..., 300.
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Since the kernel function k depends on the parametall sizeskK, o andA
depend on this parameter.

The graph ofkl(c)lzxj(c) and xz(c)/zxj(c) is shown in Figure 4.
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Fig. 4. The graph Oﬁl(c)/ng(c) and kz(c)lzjjkj (C)
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Fig. 5. Projection onto the first two kernel principaingponents
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The function

M(€)+2,(c)
;xj(c)

has a maximum at the point c = 0.017.
Using a Gaussian kernel with ¢ = 0.017 in placalbthe inner products, the
first kernel principal direction obtained gives aamingful order of how far
each observation is away from the origin (see Edg)r

In this case, kernel PCA has successfully discavére (only) underlying
pattern in the data, one that is impossible todeth classical PCA.
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NIELINIOWE SKLADOWE GLOWNE

Streszczenie

W artykule tym proponujemy dwa podeia do konstrukcji nieliniowych sktadowych gtow-
nych. Nieliniowe sktadowe gtowne raoa efektywnie skonstruowaw nowej przestrzeni cech
duzego wymiaru uzyskanej z przestrzeni $eypwej za pomog przeksztalcenia nieliniowego.

Stowa kluczowe nieliniowe sktadowe gtowne, funkcjedrowe

Klasyfikacja AMS 2010: 62H25



