Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 5 |
Tytuł artykułu

Structural changes in femoral bone tissue of rats after intraperitoneal administration of nickel

Warianty tytułu
Języki publikacji
The present study investigated the acute effects of nickel (Ni) on macroscopic and microscopic structure of femoral bone tissue in rats. For this purpose, ten 5-month-old male Wistar rats were injected intraperitoneally with a single dose of 15 mg NiCl2 per kg of body weight. Ten 5-month-old males without Ni supplementation served as a control group. Forty-eight hours after Ni administration, all animals were killed, and their femora were collected for macroscopic and microscopic evaluation. We found that intraperitoneal application of Ni had no significant effect on femoral weight and femoral length in rats. On the other hand, cortical bone thickness was significantly higher in rats administered Ni (P<0.05). Also, a decreased number of primary and secondary osteons was observed in the microstructure of these rats’ bones. Morphometrical measurements showed a significant increase in all variables (area, perimeter, maximum, and minimum diameter) of the primary osteons’ vascular canals, Haversian canals, and secondary osteons (P<0.05) in rats from the experimental group. Our results suggest that intraperitoneal injection of NiCl2 at the level used in this study had no impact on the macroscopic structure of femora of adult male rats; however, it significantly influenced the microscopic structure of their compact bone.
Słowa kluczowe
Opis fizyczny
  • Department of Zoology and Anthropology, Constantine the Philosopher University, 949 74 Nitra, Slovakia
  • Department of Zoology and Anthropology, Constantine the Philosopher University, 949 74 Nitra, Slovakia
  • Department of Botany and Genetics, Constantine the Philosopher University, 949 74 Nitra, Slovakia
  • Institute of Zoology and Anthropology, Georg-August University, 37-073 Göttingen, Germany
  • Department of Veterinary Sciences, Slovak University of Agriculture, 949 76 Nitra, Slovakia
  • 1. HARTWIG A., ASMUSS M., BLESSING H., HOFFMANN S., JAHNKE G., KHANDELWAL S., PELZER A., BURKLE A. Interference by toxic metal ions with zincdependent proteins involved in maintaining genomic stability. Food and Chemical Toxicology 40, 1179, 2002.
  • 2. FENECH M., FERGUSON L. R. Special issue on micronutrients and genomic stability. Mutation Research 475, 1, 2001.
  • 3. MCLAUGHLIN M. J., PARKER D. R., CLARKE J. M. Metals and micronutrients - food safety issues. Field Crops Research 60, 143, 1999.
  • 4. CHOWDHURY M. J., BUCKING C., WOOD C. M. Preexposure to waterborne nickel downregulates gastrointestinal nickel uptake in rainbow trout: indirect evidence for nickel essentiality. Environ. Sci. Technol. 42, 1359, 2008.
  • 5. HE Z. L., YANG X. E., STOFFELLA P. J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 19, 125, 2005.
  • 6. NIELSEN F. H. Individual functional roles of metal ions in vivo. Beneficial metal ions. Nickel. In: Handbook of Metal- Ligand Interactions in Biological Fluids. Bioinorganic Medicine 1. (Ed. Berthon G.). Marcel Dekker: New York, pp. 257-260, 1995.
  • 7. SCHNEGG A., KIRCHGESSNER M. Nickel deficiency and its effects on metabolism. Trace Elements Man. Anim. 3, 236, 1978.
  • 8. NIELSEN F. H. The effect of nickel deprivation on bone strength and shape and urinary phosphorus excretion is not enhanced by a mild magnesium deprivation in rats. In: Proceedings of the Macro and Trace Elements 22nd Workshop 2, Jena, Germany, pp. 965-970, 2004.
  • 9. NIELSEN F. H., SAUBERLICH H. E. Evidence for a possible requirement for nickel by the chick. Proc. Soc. Exp.Biol. Med. 134, 845, 1970.
  • 10. NIELSEN F. H. A mild magnesium deprivation affects calcium excretion but not bone strength and shape, including changes induced by nickel deprivation, in the rat. Biol. Trace Elem. Res., 110, 133, 2006.
  • 11. WILSON J. H., WILSON E. J., RUSZLER P. L. Dietary nickel improves male broiler (Gallus domesticus) bone strength. Biol. Trace Elem. Res. 83, 239, 2001.
  • 12. DAS K. K., DASGUPTA S. Effect of nickel sulfate on testicular steroidogenesis in rats during protein restriction. Environ. Health Perspect. 110, 923, 2002.
  • 13. BERSENYI A., FEKETE S. GY., SZILAGYI M., BERTA E., ZŐLDAG L., GLAVITS R. Effects of nickel supply on the fattening performance and several biochemical parameters of broiler chickens and rabbits. Acta Veterinaria Hungarica 52, 185, 2004.
  • 14. DAS K. K., DASGUPTA S. Studies on the role of nickel in the metabolism of ascorbicacid and cholesterol in experimental animal. Ind. J. Physiol. Allied. Sci. 52, 58, 1998.
  • 15. SIDHU P., GARG M. L., MORGENSTERN P., VOGT J., BUTZ T., DHAWAN D. K. Ineffectiveness of nickel in augmenting the hepatotoxicity in protein deficient rats. Nutr. Hosp. 20, 378, 2005.
  • 16. NIELSEN F. H., SHULER T. R., MCLEOD T. G., ZIMMERMAN T. J. Nickel influences iron metabolism through physiologic, pharmacologic, and toxicologic mechanism in rat. J. Nutr. 114, 1280, 1984.
  • 17. CHEN C. Y., SHEU J. Y., LIN T. H. Oxidative effects of nickel on bone marrow and blood of rats. J. Toxicol. Environ. Health A 58, 475, 1999.
  • 18. MARTINIAKOVA M., OMELKA R., GROSSKOPF B., CHOVANCOVA H., MASSANYI P., CHRENEK P. Effects of dietary supplementation of nickel and nickel-zinc on femoral bone structure in rabbits. Acta Vet. Scand. 51, 52, 2009.
  • 19. MARTINIAKOVA M., GROSSKOPF B., OMELKA R., DAMMERS K., VONDRAKOVA M., BAUEROVA M. Histological study of compact bone tissue in some mammals: a method for species determination. Int. J. Osteoarch. 17, 82, 2007.
  • 20. MARTINIAKOVA M., OMELKA R., GROSSKOPF B., SIROTKIN A. V., CHRENEK P. Sex-related variation in compact bone microstructure of the femoral diaphysis in juvenile rabbits. Acta Vet. Scand. 50, 15, 2008.
  • 21. ENLOW D. H., BROWN S. O. A comparative histological study of fossil and recent bone tissues. Part I. Texas J. Sci. 8, 405, 1956.
  • 22. RICQLES A. J. DE, MEUNIER F. J., CASTANET J., FRANCILLON–VIEILLOT H. Comparative microstructure of bone. In: Bone 3. Bone Matrix and Bone Specific Products. (Ed. Hall B. K.). CRC Press: Boca Raton, pp. 1-78, 1991.
  • 23. COMELEKOGLU U., BAGIS S., YALIN S., OGENLER O., YILDIZ A., SAHIN N. O., OGUZ I., HATUNGIL R. Biomechanical evaluation in osteoporosis: ovariectomized rat model. Clin. Rheumatol. 26, 380, 2007.
  • 24. ENLOW D. H., BROWN S. O. A comparative histological study of fossil and recent bone tissues. Part III. Texas J. Sci. 10, 187, 1958.
  • 25. MARTINIAKOVA M., GROSSKOPF B., VONDRAKOVA M., OMELKA R., FABIŠ M. Observation of the microstructure of rat cortical bone tissue. Scripta medica 78, 45, 2005.
  • 26. REIM N. S., BREIG B., STAHR K., EBERLE J., HOEFLICH A., WOLF E., ERBEN R. G. Cortical bone loss in androgen-deficient aged male rats is mainly caused by increased endocortical bone remodeling. J. Bone Miner. Res. 23, 694, 2008.
  • 27. MARTINIAKOVA M., OMELKA R., GROSSKOPF B., MOKOŠOVA Z., TOMAN R. Histological analysis of compact bone tissue in adult laboratory rats. Slovak J. Anim. Sci. 42, 56, 2009.
  • 28. MABILLEAU G., GILL H. S., SABOKBAR A. Effect of nickel ions on osteoclastogenesis. Bone 40, S278, 2007.
  • 29. YAMAGUCHI M., EHARA Y. Effect of essential trace metal on bone metabolism in the femoral diaphyseal tissues of rats with skeletal unloading: comparison with zinc-chelating dipeptide. Calcif. Tissue Int. 59, 27, 1996.
  • 30. GOUGH J. E., DOWNES S. Osteoblast cell death on methacrylate polymers involves apoptosis. J. Biomed. Mater. Res. 57, 497, 2001.
  • 31. KAPANEN A., ILVESARO J., DANILOV A., RYHANEN J., LEHENKARI P., TUUKKANEN J. Behaviour of nitinol in osteoblast-like ROS-17 cell cultures. Biomaterials 23, 645, 2002.
  • 32. BARON R., TROSS R., VIGNERY, A. Evidence of sequential remodeling in rat trabecular bone: Morphology, dynamic histomorphometry, and changes during skeletal maturation. Anat. Rec. 208, 137, 1984.
  • 33. AL-ASHEH S., BANAT F., MOHAI F. Sorption of copper and nickel by spent animal bones. Chemosphere 39, 2087, 1999.
  • 34. RAISZ L. G. Physiology and pathophysiology of bone remodeling. Clinical Chemistry 45, 1353, 1999.
  • 35. MABILLEAU G., FILMON R., PETROV P. K., BASLE M. F., SABOKBAR A., CHAPPARD D. Cobalt, chromium and nickel affect hydroxyapatite crystal growth in vitro. Acta Biomaterialia 6, 1555, 2010.
  • 36. BOSKEY A. L. The organic and inorganic matrices. In: Bone tissue engineering. (Eds. Hollinger J. O., Einhorn T. A., Doll B. A., Sfeir C.). CRC Press: Boca Raton, pp. 91-123, 2005.
  • 37. BOSKEY A. L. Bone mineral crystal size. Osteoporos Int. 14, 16, 2003.
  • 38. RAMSCH R., ZERNDT B. Vergleichende Untersuchungen der Haverrschen Kanale zwischen Menschen und Haustieren. Arch. Kriminol. 131, 74, 1963.
  • 39. GLADUHSEW J. M. Problems of the histological investigation of the bone in forensic medicine. Sudebnomed Exp. 7, 23, 1964.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.