PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 59 | 2 |

Tytuł artykułu

Constraints on the Lamina Density of Laminar Bone Architecture of Large-Bodied Dinosaurs and Mammals

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Laminar bone tissue is commonly found in Dinosauria (including birds) and Mammalia. The tissue emerged convergently several times, and its frequent occurrence among amniotes has stimulated researchers to study some of its geometric features. One such feature is lamina thickness or lamina density (LD, expressed as number of laminae per mm). We measured LD in a sample of sauropodomorph dinosaur taxa (basal sauropodomorphs, basal sauropods and Neosauropoda) and compared it with LD of a selection of mammals. LD is relatively constrained within the groups; nonetheless mean sauropodomorph LD differs significantly from mean mammal LD. However, increasing sample size with other dinosaur groups and more perissodactyls and artiodactyls may alter this result. Among sauropods, LD does not change drastically with increasing femur length although a slight tendency to decrease may be perceived. We conclude that the laminar vascular architecture is most likely determined by a combination of structural and functional as well as vascular supply and physiological causes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

59

Numer

2

Opis fizyczny

p.287-294,fig.,ref.

Twórcy

autor
  • Division of Paleontology, Steinmann Institute, University of Bonn, Nussallee 8, 53115 Bonn, Germany
autor
  • Division of Paleontology, Steinmann Institute, University of Bonn, Nussallee 8, 53115 Bonn, Germany
autor
  • Division of Paleontology, Steinmann Institute, University of Bonn, Nussallee 8, 53115 Bonn, Germany

Bibliografia

  • Amprino, R. 1947. La structure du tissu osseux envisagée comme expression de différences dans la vitesse de l’accroisement. Archives de Biologie 58: 315–330.
  • Anderson, J.F., Hall-Martin, A., and Russell, D.A. 1985. Long bone circumference and weight in mammals, birds, and dinosaurs. Journal of Zoology Series A 207: 53–61.
  • Brown, J.H. 2004. Towards a metabolic theory of ecology. Ecology 85: 1771–1789.
  • Buffetaut, E., Suteethorn, V., Le Loeuff, J., Cuny, C., Tong, H., and Khansubha, S. 2000. The first giant dinosaurs: a large sauropod from the Late Triassic of Thailand. Comptes rendus Palevol 1: 103–109.
  • Bybee, P.J., Lee, A.H., and Lamm, E.-T. 2006. Sizing the Jurassic theropod dinosaur Allosaurus: Assessing growth strategy and evolution of ontogenetic scaling of limbs. Journal of Morphology 267: 347–359.
  • Case, T.J. 1978. On the evolution and adaptive significance of post-natal growth rates in the terrestrial vertebrates. Quarterly Review of Biology 53: 243–282.
  • Castanet, J., Rogers, K.C., Cubo, J., and Boisard, J.-J. 2000. Periostal bone growth rates in extant ratites (ostrich and emu). Implications for assessing growth in dinosaurs. Comptes rendus de l’Académie des Sciences, Paris, Sciences de la Terre et des Planètes 323: 543–550.
  • Cooper, L.N., Lee, A.H., Taper, M.L., and Horner, J.R. 2008. Relative growth rates of predator and prey dinosaurs reflect effect of predation. Proceedings of the Royal Society B 275: 2609–2615.
  • Cubo, J., Le Roy, N., Martinez-Maza, C., and Montes, L. 2012. Paleohistological estimation of bone growth rate in extinct archosaurs. Paleobiology 38: 335–349.
  • Currey, J.D. 1962. The histology of the bone of a prosauropod dinosaur. Paleontology 5: 238–246.
  • Curtin, A., MacDowell, A., Schaible, E., and Roth, V.L. 2012. Non-invasive histological comparison of bone growth patterns among fossil and extant neonatal elephantids using synchroton radiation X-ray microtomography. Journal of Vertebrate Paleontology 32: 939–955.
  • D’Agostino, R.B. and Pearson, E.S. 1973. Testing for departures from normality. Biometrika 60: 613–622.
  • Enlow, D.H. and Brown, S.O. 1958. A comparative histological study of fossil and recent bone tissues. Part III. Texas Journal of Sciences 10: 187–230.
  • Ferretti, M., Palumbo, C., Contri, M., and Marotti, G. 2002. Static and dynamic osteogenesis: two different types of bone formation. Anatomy and Embryology 206: 21–29.
  • Francillon-Vieillot, H., Buffrénil, V. de, Castanet, J., Géraudie, J., Meunier, F.J., Sire, J.Y., Zylberberg, L., and Ricqlès, A.J. de 1990. Microstructure and mineralization of vertebrate skeletal tissues. In: J.G. Carter (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Vol. 1, 471–530. Van Nostrand Reinhold, New York.
  • Horner, J.R. and Padian, K. 2004. Age and growth dynamics of Tyrannosaurus rex. Proceedings of the Royal Society of London B 271: 1875–1880.
  • Horner, J.R., Ricqlès, A. de, and Padian, K. 1999. Variation in dinosaur skeletochronology indicators: implications for age assessment and physiology. Paleobiology 25 (4): 295–304.
  • Klein, N. and Sander, P.M. 2007. Bone histology and growth of the prosauropod Plateosaurus engelhardti Meyer, 1837 from the Norian bonebeds of Trossingen (Germany) and Frick (Switzerland). Special Papers in Paleontology 77: 169–206.
  • Klein, N. and Sander, P.M. 2008. Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology 34: 247–263.
  • Klein, N., Sander, P.M., and Suteethorn, V. 2009. Bone histology and its implications for the life history and growth of the Early Cretacous titanosaur Phuwiangosaurus sirindhornae. Geological Society, London, Special Publications 315: 217–228.
  • Lehman, T. and Woodward, H. 2008. Modeling growth rates for sauropod dinosaurs. Paleobiology 34: 264–281.
  • Margerie, E. de, Cubo, J., and Castanet, J. 2002. Bone typology and growth rate: testing and quantifying “Amprino’s rule” in the mallard (Anas platyrhynchus). Comptes Rendus Biologies 325: 221–230.
  • Margerie, E. de, Robin, J.-P., Verrier, D., Cubo, J., Groscolas, R., and Castanet, J. 2004. Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). Journal of Experimental Biology 207: 869–879.
  • Margerie, E. de, Sanchez, S., Cubo, J., and Castanet, J. 2005. Torsional resistance as a principal component of the structural design of long bones: comparative multivariate evidence in birds. Anatomical Record 282: 49–66.
  • Marotti, G. 2010. Static and dynamic osteogenesis. Italian Journal of Anatomy and Embryology 115: 123–126.
  • Mishra, S. and Knothe Tate, M.L. 2003. Effect of lacunocanalicular architecture on hydraulic conductance in bone tissue: Implications for bone health and evolution. Anatomical Record Part A 273A: 752–762.
  • O’Brien, R.G. 1978. Robust techniques for testing heterogeneity of variance effects in factorial designs. Psychometrika 43: 327–342.
  • Padian, K., Horner, J.R., and Ricqlès, A.J. de 2004. Growth in small dinosaurs and pterosaurs: The evolution of archosaurian growth strategies. Journal of Vertebrate Paleontology 24: 555–571.
  • Petermann, H. and Sander, P.M. 2013. Histological evidence for muscle insertion in extant amniote femora: implications for muscle reconstruction in fossils. Journal of Anatomy 222 (4): 419–436.
  • Ray, S., Bandyopadhyay, S., and Bhawal, D. 2009. Growth patterns as deduced from bone microstructure of some selected neotherapsids with special emphasis on dicynodonts: Phylogenetic implications. Palaeoworld 18: 53–66.
  • Ray, S., Botha, J., and Chinsamy, A. 2004. Bone histology and growth patterns of some non-mammalian therapsids. Journal of Vertebrate Paleontology 24: 634–648.
  • Ricqlès, A.J. de 1968. Recherches paléohistologiques sur les os longs des tétrapodes I. – Origine du tissu osseux plexiforme des dinosauriens sauropodes. Annales de Paléontologie 54: 133–145.
  • Ricqlès, A.J. de, Padian, K., and Horner, J.R. 2003. On the bone histology of some Triassic pseudosuchian archosaurs and related taxa. Annales de Paléontologie 89: 67–101.
  • Ricqlès, A.J. de, Padian, K., Knoll, F., and Horner, J.R. 2008. On the origin of high growth rates in archosaurs and their ancient relatives: Complementary histological studies on Triassic archosauriforms and the problem of a “phylogenetic signal” in bone histology. Annales de Paléontologie 94: 57–76.
  • Sander, P.M. 2000. Long bone histology of the Tendaguru sauropods: Implications for growth and biology. Paleobiology 26: 466–488.
  • Sander, P.M. and Andrássy, P. 2006. Lines of arrested growth and long bone histology in Pleistocene large mammals from Germany: What do they tell us about dinosaur physiology? Palaeontographica A 277: 143–159.
  • Sander, P.M. and Klein, N. 2005. Developmental plasticity in the life history of a prosauropod dinosaur. Science 310: 1800–1802.
  • Sander, P.M. and Tückmantel, C. 2003. Bone lamina thickness, bone apposition rates, and age estimates in sauropod humeri and femora. Paläontologische Zeitschrift 76: 161–172.
  • Sander, P.M., Klein, N., Buffetaut, E., Cuny, G., Suteethorn, V., and Le Loeuff, J. 2004. Adaptive radiation in sauropod dinosaurs: bone histology indicates rapid evolution of giant body size through acceleration. Organisms, Diversity and Evolution 4: 165–173.
  • Sander, P.M., Klein, N., Stein, K., and Wings, O. 2011. Sauropod bone histology and implications for sauropod biology. In: N. Klein, K. Remes, C.T. Gee, and P.M. Sander (eds.), Understanding the Life of Giants: Biology of the Sauropod Dinosaurs, 276–302. Indiana University Press, Bloomington.
  • Sander, P.M., Mateus, O., Laven, T., and Knötschke, N. 2006. Bone histology indicates insular dwarfism in a new Late Jurassic sauropod dinosaur. Nature 441: 739–741.
  • Seebacher, F. 2001. A new method to calculate allometric length-mass relationships of dinosaurs. Journal of Vertebrate Paleontology 21: 51–60.
  • Starck, J.M. and Chinsamy, A. 2002. Microstructure and developmental plasticity in birds and other dinosaurs. Journal of Morphology 254: 232–246.
  • Stein, K. and Sander, P.M. 2009. Histological core drilling: A less destructive method for studying bone histology. In: M.A. Brown, J.F. Kane, and W.G. Parker (eds.), Methods in Fossil Preparation: Proceedings of the First Annual Fossil Preparation and Collections Symposium, 69–80. Petrified Forest National Park, Holbrook (http://preparation.paleo.amnh.org/assets/FPCSvolume-Final.pdf).
  • Stein, K. and Prondvai, E. 2012. No fibrous (woven) bone in sauropod “fibrolamellar” bone? Journal of Vertebrate Paleontology 32: 178A.
  • Stein, K. and Prondvai, E. 2014. Rethinking the nature of fibrolamellar bone: An integrative biological revision of sauropod plexiform bone formation. Biological Reviews of the Cambridge Philosophical Society 89: 24–47.

Typ dokumentu

Bibliografia

Identyfikatory

DOI

Identyfikator YADDA

bwmeta1.element.agro-8195f85d-ab0a-4a0c-b45e-1c9a62c691c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.