PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 1 |

Tytuł artykułu

Sex-specific seasonal change in body mass in two species of vespertilionid bats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In most mammals, reproductive cost differs between males and females in timing and duration because of the different sex-specific energy allocation strategies to maximize fitness. The differences in reproductive strategy adopted by sexes may result in differences in seasonal variation of body mass. Here seasonal variations in body mass are discussed for two species of vespertilionid bats: Daubenton's bat (Myotis daubentonii) and Savi's pipistrelle (Hypsugo savii). Both species were observed to have a seasonal variability in body conditions, which was sex dependent. In late spring and for a given forearm length, females were heavier than males, but differences were small in late summer. Furthermore, female'’s body mass decreased during late spring and summer likely to support the energy requirement for lactation, while male's mass did not change (H. savii) or slightly increase (M. daubentonii) over the same period. On the contrary male M. daubentonii depleted body fat reserves during early autumn, likely because of the energy expenditure to increase mating opportunities. Our results suggest that seasonal changes in body condition in hibernating bats may reflect the differences in reproductive strategies between sexes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

1

Opis fizyczny

p.149-155,fig.,ref.

Twórcy

autor
  • CHIROSPHERA, O. Vigliani 185, 10127 Torino, Italy
autor
  • CHIROSPHERA, O. Vigliani 185, 10127 Torino, Italy

Bibliografia

  • 1. L. Arthur , and M. Lemaire . 2009. Les chauves-souris de France, Belgique, Luxembourg et Suisse. Biotope. Museum National d'Histoire Naturelle, Paris, 544 pp. Google Scholar
  • 2. R. M. R. Barclay , and L. D. Harder . 2003. Life histories of bats: life in the slow lane. Pp. 209–253, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chicago, 779 pp. Google Scholar
  • 3. C. A. Beck , W. D. Bowen , and S. J. Iverson . 2003. Sex differences in the seasonal patterns of energy storage and expenditure in a phocid seal. Journal of Animal Ecology, 72: 280–291. Google Scholar
  • 4. J. E. Brommer , H. Pietiäinen , and H. Kolunen . 1998. The effect of age at first breeding on ural owl lifetime reproductive success and fitness under cyclic food conditions. Journal of Animal Ecology, 67: 359–369. Google Scholar
  • 5. A. K. Brunet-Rossini , and G. S. Wilkinson . 2009. Methods for age estimation and the study of senescence. Pp. 315– 328, in Bat ecological and behavioral methods for the study of bats ( T. H. Kunz and S. Parsons , eds.). Johns Hopkins University Press, Baltimore, 901 pp. Google Scholar
  • 6. K. P Burnham , and D. R. Anderson . 2002. Model selection and multimodel inference: a practical information — theoretic approach. Springer Verlag, New York, 496 pp. Google Scholar
  • 7. W. A. Calder 1984. Size, function and life history. Cambridge University Press, Cambridge, 431 pp. Google Scholar
  • 8. A. C. Chan-McLeod , R. G. White , and D. E. Russell . 1999. Comparative body composition strategies of breeding and nonbreeding female caribou. Canadian Journal of Zoology, 77: 1901–1907. Google Scholar
  • 9. T. H. Clutton-Brock 1989. Mammalian mating systems. Proceedings of the Royal Society of London, 236B: 339–372. Google Scholar
  • 10. T. H. Clutton-Brock , and G. Parker . 1992. Potential reproductive rates and the operation of sexual selection. Quarterly Review of Biology, 62: 437–456. Google Scholar
  • 11. T. H. Clutton-Brock , S. D. Albon , and F. E. Guinness . 1989. Fitness costs of gestation and lactation in wild mammals. Nature, 337: 260–262. Google Scholar
  • 12. C. Dietz , and O. von. Helversen . 2004. Illustrated identification key to the bats of Europe. Electronic publication, version 1.0, first released 15-12-2004. Available at http://biocenosi.dipbsf.uninsubria.it/didattica/bat_key1.pdf. Google Scholar
  • 13. C. Dietz , O. von Helversen , and D. Nill . 2009. Bats of Britain, Europe and northwest Africa. A&C Black Publishers Ltd., London, 400 pp. Google Scholar
  • 14. J. A. Encarnação , M. Dietz , U. Kierdorf , and V. Wolters . 2004. Body mass change in male daubenton's bats Myotis daubentonii (Chiroptera, Vespertilionidae) during the seasonal activity period. Mammalia, 68: 291–297. Google Scholar
  • 15. A. C. Entwistle , P. A. Racey , and J. R. Speakman . 1998. The reproductive cycle and determination of sexual maturity in male brown long-eared bats, Plecotus auritus (Chiroptera: Vespertilionidae). Journal of Zoology (London), 244: 63–70. Google Scholar
  • 16. D. J. Fairbain 1997. Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annual Review of Ecology and Systematics, 28: 659–687. Google Scholar
  • 17. R. A. Fisher 1930. The genetical theory of natural selection. Clarendon Press, Oxford, 272 pp. Google Scholar
  • 18. J. L. Gittleman , and S. D. Thompson . 1988. Energy allocation in mammalian reproduction. American Zoologist, 3: 863–875. Google Scholar
  • 19. A. J. Haarsma 2008. Manual for assessment of reproductive status, age and health in european vespertilionid bats. Electronic publication, first released 12-09-2008. Hillegom, Holland. Google Scholar
  • 20. G. V. Hilderbrand , C. C. Schwartz , C. T. Robbins , and T. A. Hanley . 2000. Effect of hibernation and reproductive status on body mass and condition of coastal brown bears. Journal of Wildlife Management, 64: 178–183. Google Scholar
  • 21. D. J. Holmes , and S. N. Austad . 1994. Fly now, die later: life-history correlates of gliding and flying in mammals. Journal of Mammalogy, 75: 224–226. Google Scholar
  • 22. K. A. Jonasson , and C. K. R. Willis . 2011. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS ONE, 6: 1–8. Google Scholar
  • 23. T. Kokurewicz 2004. Sex and age related habitat selection and mass dynamics of Daubenton’s bats Myotis daubentonii (Kuhl, 1817) hibernating in natural conditions. Acta Chiropterologica, 6: 121–144. Google Scholar
  • 24. T. H. Kunz , J. A. Wrazen , and C. D. Burnett . 1998. Changes in body mass and fat reserve in prehibernating little brown bats (Myotis lucifugus). Ecoscience, 5: 8–17. Google Scholar
  • 25. B. Lanza 2012. Fauna d'Italia. Mammalia v. Chiroptera. Calderini Editore, Bologna, 786 pp. Google Scholar
  • 26. P. Neuhaus 2000. Weight comparisons and litter size manipulation in Columbian ground squirrels (Spermophilus columbianus) show evidence of costs of reproduction. Behavioral Ecology and Sociobiology, 48: 75–83. Google Scholar
  • 27. U. M. Norberg , and J. M. V. Rayner . 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London, 316B: 335–427. Google Scholar
  • 28. R. H. Peters 1983. The ecological implications of body size. Cambridge Studies in Ecology. Cambridge University Press, Cambridge, 329 pp. Google Scholar
  • 29. D. Pomeroy 1990. Why fly? The possible benefits for lower mortality. Biological Journal of the Linnean Society, 40: 53–65. Google Scholar
  • 30. P. A. Racey 1974. The reproductive cycle in male noctule bats (Nyctalus noctula). Journal Reporduction and Fertility, 41: 169–182. Google Scholar
  • 31. P. A. Racey 2009. Reproductive assessment of bats. Pp. 249– 264, in Bat ecological and behavioral methods for the study of bats ( T. H. Kunz and S. Parsons , eds.). Johns Hopkins University Press, Baltimore, 901 pp. Google Scholar
  • 32. R. Ransome 1990. The natural history of hibernating bats. Christopher Helm, London, 235 pp. Google Scholar
  • 33. P. W. Richardson 1994. A new method of distinguishing Daubenton's bats (Myotis daubentonii) up to one year old from adults. Journal of Zoology (London), 233: 307–309. Google Scholar
  • 34. D. A. Roff 1992. The evolution of life histories: theory and analysis. Chapman and Hall, New York, 535 pp. Google Scholar
  • 35. P Senior , R. K. Butlin , and J. D. Altringham . 2005. Sex and segregation in temperate bats. Proceedings of the Royal Society of London, 272B: 2467–2473. Google Scholar
  • 36. J. R. Speakman , and P. A. Racey . 1986. The influence of body condition on sexual development of male brown long-eared bats (Plecotus auritus) in the wild. Journal of Zoology (London), 210: 515–525. Google Scholar
  • 37. J. R. Speakman , and A. Rowland . 1999. Preparing for inactivity: how insectivorous bats deposit a fat store for hibernation. Proceedings of the Nutrition Society, 58: 123–131. Google Scholar
  • 38. S. C. Stearns 1983. The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos, 41: 173–187. Google Scholar
  • 39. S. C. Stearns 1992. The evolution of life histories. Oxford University Press, Oxford, 262 pp. Google Scholar
  • 40. R. L. Trivers 1972. Parental investment and sexual selection. Pp. 136–179, in Sexual selection and the descent of man 1871–1971 ( B. Campbell , ed.). Aldine Publishing Co., Chicago, 388 pp. Google Scholar
  • 41. J. A. Welbergen 2011. Fit females and fat polygynous males: seasonal body mass changes in the grey-headed flying fox. Oecologia, 165: 629–637. Google Scholar
  • 42. G. C. Williams 1966. Natural selection, the cost of reproduction, and a refinement of lack's principle. American Naturalist, 100: 67–690. Google Scholar
  • 43. A. F. Zuur , E. N. Ieno , N. J. Walker , A. A. Saveliev , and G. M. Smith . 2009. Mixed effects models and extensions in ecology with R. Springer-Verlag, New York, 574 pp. Google Scholar

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-811dfb58-9e13-4c0b-a1fa-e40d55e3395b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.