Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 4 |
Tytuł artykułu

Antioxidative responses to different altitudes in leaves of alpine plant Polygonum viviparum in summer

Warianty tytułu
Języki publikacji
Mountain environmental stresses result in increased formation of hydrogen peroxide (H₂O₂) and accumulation of malondialdehyde (MDA) in leaves of Polygonum viviparum. The activities of several antioxidative system enzymes such as superoxide dismutase (SOD, EC, catalase (CAT, EC, peroxidase (POD, EC, glutathione reductase (GR, EC, dehydroascorbate reductase (DHAR, EC and the contents of several non-enzymatic antioxidants such as reduced form of ascorbate (ASC), dehydroascorbate (DHA), reduced glutathione (GSH), and oxidized glutathione (GSSG) were investigated in leaves of P. viviparum, which were collected from three altitudes (2,200, 3,200, and 3,900 m) of Tianshan Mountain in China. The activities of these four antioxidative enzymes were accompanied by increases of H₂O₂ levels from 2,200 to 3,200 m. However, the activities of CAT and POD were decreased, whereas the activities of SOD and GR continually increased at 3,900 m. Analyses of isoforms of SOD, CAT, POD, and GR showed that the leaves of P. viviparum exposed different altitude conditions are capable of differentially altering the intensity. Additionally, two new isoforms of SOD were detected at 3900 m. A continual increase in the ASC, ASC to DHA ratio, GSH and GSH/ [GSH + GSSG] ratio, and the activity of DHAR were observed in leaves of P. viviparum with the elevation of altitude. These results suggest that the higher contents of ASC, GSH as well as an increase in reduced redox state may be essential to antioxidation processes in the leaves of P. viviparum, whereas antioxidant enzymes system is a cofactor in the processes.
Słowa kluczowe
Opis fizyczny
  • School of Life Sciences, Lanzhou University, 730000 Lanzhou, China
  • Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, 730070 Lanzhou, China
  • School of Life Sciences, Lanzhou University, 730000 Lanzhou, China
  • Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, 730070 Lanzhou, China
  • School of Life Sciences, Lanzhou University, 730000 Lanzhou, China
  • Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, 730070 Lanzhou, China
  • Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, 730070 Lanzhou, China
  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi: 10.1016/S0076-6879(84)05016-3
  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341. doi:10.1093/jexbot/53.372.1331
  • Anderson JV, Chevone BI, Hess JL (1992) Seasonal variation in the antioxidant system of eastern white pine needles: evidence for thermal dependence. Plant Physiol 98:501–508. doi:10.1104/ pp.98.2.501
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701
  • Bauert MR (1993) Vivipary in Polygonum viviparum: an adaptation to cold climate? Nord J Bot 13:473–480. doi:10.1111/j.1756-1051.1993.tb00085.x
  • Bauert MR (1996) Genetic diversity and ecotypic differentiation in arctic and alpine populations of Polygonum viviparum. Arct Alp Res 28:190–195. doi:10.2307/1551759
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8
  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566. doi:10.1016/0003-2697 (87)90489-1
  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116. doi:10.1146/annurev.pp.43.060192.000503
  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Brüggemann W, Beyel V, Brodka M, Poth H, Weil M, Stockhaus J (1999) Antioxidants and antioxidative enzymes in wild-type and transgenic Lycopersicon genotypes of different chilling tolerance. Plant Sci 140:145–154. doi:10.1016/S0168-9452(98) 00220-9
  • Buchner O, Holzinger A, Lütz C (2007) Effects of temperature and light on the formation of chloroplast protrusions in leaf mesophyll cells of high alpine plants. Plant Cell Environ 30:1347–1356. doi:10.1111/j.1365-3040.2007.01707.x
  • Callaghan TV, Emanuelsson U (1985) Population structure and processes of tundra plant and vegetation. In: White J (ed) The population structure of vegetation. W. Junk Publishers, Dordrecht, pp 399–439
  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162. doi:10.1105/tpc.021584
  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689. doi: 10.1104/pp.105.062000
  • Crawford RMM, Chapman HM, Abbott RJ, Balfour J (1993) Potential impact of climate warming on Arctic vegetation. Flora 188:367–381
  • Diggle PK (1997) Extreme preformation in alpine Polygonum viviparum: An architectural and developmental analysis. Am J Bot 84:154–169. doi:10.2307/2446077
  • Foyer CH (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. doi:10.1105/tpc.105. 033589
  • Foyer CH, Rowell J, Walker D (1983) Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157:239–244. doi:10.1007/BF00405188
  • Foyer CH, Descourviéres P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523. doi: 10.1111/j.1365-3040.1994.tb00146.x
  • Fridovich I (1986) Superoxide dismutases. In: Meister A (ed) Adv Enzymol Relat Areas Mol Biol. Wiley, New York, pp 58–97
  • Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17. doi:10.1007/BF00390803
  • Hammerschmidt R, Nuckles EM, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to colletotrchum lagenarium. Physiol Plant Pathol 20:73–82. doi:10.1016/0048-4059(82)90025-X
  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611. doi:10.1007/s004250050524
  • Hossain MA, Asada K (1984) Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol 25:85–92
  • Hung SH, Wang CC, Ivanov SV, Alexieva V, Yu CW (2007) Repetition of hydrogen peroxide treatment induces a chilling tolerance comparable to cold acclimation in mung bean. J Am Soc Hortic Sci 132:770–776
  • Köner CH, Diemer M (1994) Evidence that plants from high altitudes retain their greater photosynthetic efficiency under elevated CO₂. Funct Ecol 8:58–68. doi:10.2307/2390112
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0
  • Law R, Cook RED, Manlove RJ (1983) The ecology of flower and bulbil production in Polygonum viviparum. Nord J Bot 3:559–565. doi:10.1111/j.1756-1051.1983.tb01468.x
  • Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1099. doi:10.1104/pp.119.3.1091
  • Lütz C, Engel L (2007) Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate? Protoplasma 231:183–192. doi:10.1007/s00709-007-0249-8
  • Marchand FL, Kockelbergh F, van de Vijver B, Beyens L, Nijs I (2006) Are heat and cold resistance of arctic species affected by successive extreme temperature events? New Phytol 170:291–300. doi:10.1111/j.1469-8137.2006.01659.x
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02) 02312-9
  • Mittova V, Theodoulou FL, Kiddle G, Gomez L, Volokita M, Tal M, Foyer CH, Guy M (2003) Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett 554:417–421. doi: 10.1016/S0014-5793(03)01214-6
  • Moreau PA, Mleczko P, Ronikier M, Ronikier A (2006) Rediscovery of Alnicola cholea (Cortinariaceae): taxonomic revision and description of its mycorrhiza with Polygonum viviparum (Polygonaceae). Mycologia 98:468–478. doi:10.3852/mycologia. 98.3.468
  • Mühlmann O, Bacher M, Peintner U (2008) Polygonum viviparum mycobionts on an alpine primary successional glacier forefront. Mycorrhiza 18:87–95. doi:10.1007/s00572-007-0156-z
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249
  • Petersen PM (1981) Variation of the population structure of Polygonum viviparum L in relation to certain environmental conditions. Medd Gronl Biosci 4:3–19
  • Polle A, Rennenberg H (1992) Field studies on Norway spruce trees at high altitudes: II Defence systems against oxidative stress in needles. New Phytol 121:635–642. doi:10.1111/j.1469-8137. 1992.tb01134.x
  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L. Karst.). Plant Physiol 106:53–60
  • Prasad TK, Ander MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74
  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozoneinduced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136. doi:10.1104/ pp.110.1.125
  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H₂O₂ production, oxidative stress, and H₂O₂-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H₂O₂. Plant Physiol 115:137–149. doi: 10.1104/pp.115.1.137
  • Ren HX, Wang ZL, Chen X, Zhu YL (1999) Antioxidative responses to different altitude in Plantago major. Environ Exp Bot 42:51–59. doi:10.1016/S0098-8472(99)00015-5
  • Salin ML, Lyon DS (1983) Iron-containing superoxide dismutases in eukaryotes: Localization in chloroplasts from water lily, Nuphar Iuteum. In: Cohen G, Greenwald RA (eds) Oxy-radicals and their scavenger systems. Elsevier, Amsterdam, pp 344–347
  • Smith IK, Vierheller TL, Thorne CA (1989) Properties and functions of glutathione reductase in plants. Physiol Plant 77:449–456. doi: 10.1111/j.1399-3054.1989.tb05666.x
  • Streb P, Feierabend J, Bligny R (1997) Resistance to photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ 20:1030–1040. doi: 10.1111/j.1365-3040.1997.tb00679.x
  • Tausz M, Šircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962. doi:10.1093/jxb/erh194
  • Veljovic-Jovanovic S, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40:501–507. doi:10.1016/ S0981-9428(02)01417-1
  • Walker MA, McKersie BD (1993) Role of the ascorbate glutathione antioxidant system in chilling resistance of tomato. J Plant Physiol 141:234–239
  • Wildi B, Lütz C (1996) Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ 19:138–146. doi:10.1111/j.1365-3040.1996.tb00235.x
  • Wookey PA, Welker JM, Parsons AN, Press MC, Callaghan TV, Lee JA (1994) Differential growth, allocation and photosynthetic responses of Polygonum viviparum to simulated environmental change at a high arctic polar semi-desert. Oikos 70:131–139. doi: 10.2307/3545708
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.