Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 18 |
Tytuł artykułu

Recent alterations of aerosol concentration, mercury distribution and organic matter deposition in the Arctic

Treść / Zawartość
Warianty tytułu
Języki publikacji
Material fluxes in the Arctic and Antarctic have been, in several respects, strongly affected recently. For example, atmospheric turbidity conditions are frequently subject to strong changes due to haze and dust transport episodes, which can cause considerable perturbations in the radiation balance of the atmosphere beyond regional scale. This, directly or indirectly, contributes to the increased mercury deposition and organic matter fluxes to sediments. The results show that local emissions are not always the most important factors influencing the composition of aerosol in the atmosphere of the west Spitsbergen region. The direct radiative impact of polar aerosols on the surface and at the top of the atmosphere (TOA) need to be studied more closely through both theoretical studies on the aerosol radiative properties and measurements of the surface reflectance characteristics. Mercury dissolved/solid partitioning, both in the unconsolidated, fluffy layer of suspended matter covering the sediments, and the uppermost sediment layer, indicate that the influence of the athmospheric mercury deposition event (AMDE) can prolong well into summer (July/August), and can provide a pathway to the food chain for mercury contained in sediments. Since terrigenous supplies of organic carbon to the Barents Sea are minor (∼5%) compared to the marine supply, modern sediment deposits in this region sequester on average 6.0 g/m2year organic carbon, or 5.8% of the annual integrated pelagic primary production. This burial fraction exceeds, by a factor of 3, the burial fraction derived for the Holocene.
Opis fizyczny
  • Institute of Oceanology, Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland
  • Ariya P. A., Dastoor A. P., 2004, The Arctic: a sink for mercury, Tellus Series B-Chemical and Physical Meteorology, 56(5), 397–403.
  • Arnold D., Ayotte P., 2003, Canadian Arctic Contaminants Assessment Report II, Ottawa, Human Health, Indian Affairs and Northern Development, 127.
  • Bełdowski J., Pempkowiak J., 2009, Mercury concentration and speciation changes in the course of early diagenesis in marine coastal sediments (Southern Baltic Sea), Journal of Marine and Freshwater Research, 60, 745–757.
  • Bełdowski J., Miotk M., Pempkowiak J., 2009, Mercury fluxes through the sediment water interface and bioavailability of mercury in southern Baltic Sea sediments, Oceanologia, 51 (2), 263–285.
  • Carroll J., Zaborska A., Papucci C., Schirone A., Carroll M.L., Pempkowiak J., 2008, Accumulation of organic carbon in western Barents Sea sediments, Deep-Sea Research II 55 (20–21), 2361–2371.
  • Law K.S., Stohl A., 2007, Arctic air pollution: Origins and impacts, Science, 315 (5818), 1537–1540.
  • Pempkowiak J., Cossa D., Sikora A., Sanjuan J., 1998, Mercury in water and sediments of the southern Baltic Sea, Science of the Total Environment, 213 (1–3), 185–192.
  • Rozwadowska A., Zieliński T., Petelski T., Sobolewski P., 2010, Cluster analysis of the impact of air back trajectories on aerosol optical properties at Hornsund, Spitsbergen, Atmospheric Chemistry and Physics, 10, (3), 877–893.
  • Smirnov A., Holben B. N., Eck T. F., Slutsker I., Chatenet B., Pinker R. T., 2002, Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites,Geophysical Research Letters , 29 (23), 2115, doi:10.1029/2002GL016305.
  • Schroeder W. H., Anlauf K. G., Barrie L. A., Lu J. Y., Steffen A., Schneeberger D. R., Berg T., 1998, Arctic springtime depletion of mercury, Nature, 394(6691), 331–332.
  • Slemr F. and. Langer E., 1992, Increase in Global Atmospheric Concentrations of Mercury Inferred from Measurements over the Atlantic-Ocean, Nature, 355(6359), 434–437.
  • Steffen A., Douglas T., Amyot M., Ariya P., Aspmo K., Berg T., Bottenheim J., Brooks S., Cobbett F., Dastoor A., Dommerque A., Ebinghaus R., Ferari C., Gardfeldt K., Goodsite M. E., Leon D., Paulain A. J., Scherz C., Sokov H., Sommar J., Temme C., 2008, A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow, Atmospheric Chemistry and Physics, 8(6), 1445–1482.
  • Szczepańska A., Zaborska A., Pempkowiak J., 2009, Sediment accumulation rates in the Gotland deep, Baltic proper obtained by 210Pb and 137Cs methods, Rocznik Ochrony Środowiska, 11, 77–85.
  • Tomasi C., Vitale V., Lupi A., Carmine C. D., Campanelli M., Herber A., Treffeisen R., Stone R. S., Andrews E., Sharma S., Radionov V., von Hoyningen-Huene W., Stebel K., Hansen G., Myhre C. L., Wehrli C., Aaltonen V., Lihavainen H., Virkkula A., Hillamo R., Ström J., Toledano C., Cachorro V., Ortiz P., de Frutos A., Blindheim S., Frioud M., Gausa M., Zielinski T., Petelski T., Shiobara M., 2007, Aerosols in Polar regions: A historical review on the basis of optical depth and in-situ observations, Journal Geophysical Research, 112, D16205, doi:10.1029/2007JD008432.
  • Wagemann R., Trebacz E., 1998, Methylmercury and total mercury in tissues of arctic marine mammals, Science of the Total Environment, 218(1), 19–31.
  • Zaborska A., Carroll J., Papucci C., Torricelli L., Carroll M.L., Walkusz-Miotk J., Pempkowiak J., 2008, Recent sediment accumulation rates for the Western margin of the Barents Sea, Deep-Sea Research II, 55 (20–21), 2352–2360.
  • Zaborska A., Mietelski J.W., Carroll J., Papucci C., Pempkowiak J., 2010, Sources and distributions of 137Cs, 238Pu and 239,240Pu in the Barents Sea, Journal of Environmental Radioactivity, 101 (4), 323–331.
  • Zieliński, T., Petelski, T., Rozwadowska, A., 2005, Aerosol optical properties in the Arctic region, Proceedings of the Annual American Association for Aerosol Research Annual Conference, 1PH16, 59.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.