PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |

Tytuł artykułu

Relationships among raw materials, grinding ratios, and moisture content during the composting process

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Grinding materials as a pretreatment contribute to successful composting. Here the grinding ratio of 4 raw materials and compost samples with different maturity degrees were compared and discussed. Results revealed that the highest grinding ratio was obtained when drying the 3 straws into constant weight, but keeping water content around 10% for sewage sludge. The carbon-to-nitrogen ratio (C/N) was an important factor impacting the grinding ratio of raw materials except water content. Different straw materials had a decreased grinding ratio from the highest to the lowest in the following order: corn stover > rice straw > wheat straw. The grinding ratio of fermented compost significantly decreased lower than about 50% when the water content was higher than 30%, whereas no significant difference was observed when the water content was lower than 20%. Compared with original materials, mature compost had a better grinding ratio. Further regression analysis implies that grinding ratio had a negative linear orrelation with total organic carbon (TOC), C/N, hemicellulose, and cellulose, but no apparent correlation with pH, EC, GI, and lignin. Results reported here may provide an efficient way to save energy and investment in the industry production of pellet compost.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.343-348,fig.,ref.

Twórcy

autor
  • School of Life Science, Anhui University, Hefei, China
autor
  • College of Animal Technology, Jilin Agricultural University, Changchun, China
autor
  • Department of Biological and Agricultural Engineering, University of Georgia, Athens, GA, USA
autor
  • College of Resource and Environmental Engineering, China Agricultural University, Beijing, China
autor
  • Institute of Physical Science and Information Technology, Institute of Health Science, Anhui University, Hefei, China

Bibliografia

  • 1. LODHA S., MAWAR R., SAXENA A. Compost application for suppression of Macrophomina phaseolina causing charcoal rot in arid crops. Int. Soc. Hortic. Sci. 18, 1044, 2014.
  • 2. Awasthi M.K., Pandey A.K., Bundela P. S., Khan J. Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: Characterization of physicochemical parameters and microbial enzymatic dynamic. Bioresource Technol. 182, 200, 2015.
  • 3. Jindo K., Sonoki T., Matsumoto K., Canellas L., Roig A., Sanchez-Monedero M.A. Influence of biochar addition on the humic substances of composting manures. Waste Manage. 49, 545, 2016.
  • 4. Isobaev P., Bouferguene A., Wichuk K.M., Mccartney D. An enhanced compost temperature sampling framework: Case study of a covered aerated static pile. Waste Manage. 34 (7), 1117, 2014.
  • 5. FANG M., WONG J.W.C., LI G.X. Changes in biological parameters during co-composting of sewage sludge and coal ash residues. Environ. Technol. 64, 55, 1998.
  • 6. Jusoh M.L.C., Manaf L.A., Latiff P.A. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iranian J. Environ. Health Sci. Eng. 10 (1), 17, 2013.
  • 7. Wang K., Li W.G., Guo J.H., Zou J., Li Y., Zhang L. Spatial distribution of dynamics characteristic in the intermittent aeration static composting of sewage sludge. Bioresource Technol. 102 (9), 5528, 2011.
  • 8. Raj D., Antil R.S. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresource Technol. 102 (3), 2868, 2011.
  • 9. Antil R.S., Raj D. Chemical and microbiological parameters for the characterization of maturity of composts made from farm and agro-industrial wastes. Arch. Agron. soil sci. 58 (8), 833, 2012.
  • 10. Nikiema J., Cofie O., Asante-Bekoe B., Otoo M., Adamtey N. Potential of locally available products for use as binders in producing fecal compost pellets in Ghana. Environ. Prog. Sustain. 33 (2), 504, 2014.
  • 11. ZHANG L., MA H.X., ZHANG H.Q., XUN L.Y., CHEN G.J., WANG L.S. Thermomyces lanuginosus is the dominant fungus in maize straw composts. Bioresource Technol. 197, 266, 2015.
  • 12. Mostafid M.E., Shank C., Imhoff P.T., Yazdani R. Gas transport proprties of compost-woodchip and green waste for landfill biocovers and biofilters. Chem. Eng. J. 191 (19), 314, 2012.
  • 13. Samadi S., Eerdenburg F.J.C.M.V., Jamshidifard A.R., Otten G.P., Droppert M., Heederik D.J.J., Wouters I.M. The influence of bedding materials on bio-aerosol exposure in dairy barns. J. Expo. Sci. Env. Epid. 22 (4), 361, 8p, 2012.
  • 14. HAO X.D., CAO X.K., HU Y.S. Destruction and degradation of sludge lignocelluloses by pretreatment followed by anaerobic digestion. Acta Sci. Circumst. 34 (7), 1771, 2014.
  • 15. Zafari A., Kianmehr M.H. Factors affecting mechanical properties of biomass pellet from compost. Environ. Technol. 35 (4), 478, 2014.
  • 16. Absalan G., Kianmehr M.H., Arabhosseini A. Effective moisture diffusivity and mathematical modeling of drying compost pellet. Agric. Eng. Int. 18 (2), 156, 2016.
  • 17. Eshmetov I., Salihanova D., Agzamhodjaev A. Examination of infulence of the grinding degree and stabilizing agent on the rheological properties of aqua-coal fuel suspensions. J. Chem. Technol. Metallurgy 50 (2), 157, 2015.
  • 18. Batchelor A.R., Jones D.A., Plint S. Kingman S.W. Increasing the grind size for effective liberation and flotation of a porphyry copper ore by microwave theatment. Miner. Eng. 94, 61, 2016.
  • 19. Shreck A.L., Nuttelman B.L., Schneider C.J., Burken D.B., Harding J.L., Erickson G.E., Klopfenstein T.J., Cecava M.J. Effects of grind size when alkaline treating corn residue and impact of ratio of alkaline-treated residue and distillers grains on performance of finishing cattle. J. Anim. Sci. 93 (7), 3613, 2015.
  • 20. Tumuluru J.S. Specific energy consumption and quality of wood pellets produced using high-moisture lodgepole pine grind in a flat die pellet mill. Chem. Eng. Res. Des. 110, 82, 2016.
  • 21. Zafari A., Kianmehr M.H. Effect of raw material properties and die geometry on the density of biomass pellets from composted municipal solid waste. BioResources. 7 (4), 4704, 2012.
  • 22. Bernabé G.A., Kobelnik M., Almeida S., Ribeiro C.A., Crespi M.S. Thermal behavior of lignin and cellulose from waste composting process. J. Therm. Anal. Calorim. 111 (1), 589, 2012.
  • 23. Agarwal U. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta. 224, 1141, 2006.
  • 24. Buffiere P., Loisel D., Bernet N., Delgenes J.P. Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci. Technol. 53, 233, 2006.
  • 25. The U.S. Department of Agruiculture and The U.S. Composting Council. Test Methods for the Examination of Composting and Compost (TMECC). Edaphos Int, Houston, TX, 2001.
  • 26. Peltre C., Dignac M.F., Derenne S., Houot S. Change of the chemical composition and biodegradability of the Van Soest soluble fraction during composting: A study using a novel extraction method. Waste Manage. 30, 2448, 2010.
  • 27. Zhang H., Li G., Gu J., Wang G., Li Y., Zhang D. Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste. Waste Manage. 58, 369, 2016.
  • 28. USEPA. Control of Pathogens and Vector Attaction in Sewage Sludge. No.EPA/625R-92/013. Cincinnati, OH: United States Environmental Protection Agency. 2003.
  • 29. SWARNAM T.P., VELMURUGAN A., PANDEY S.K., DAM R.S. Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology. Bioresource Technol. 207, 76, 2016.
  • 30. Aggelis G., Ehaliotis C., Nerud F., Stoychev I., Lyberatos G., Zervakis G. Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Applied Microbiology & Biotechnology, 59, 353, 2002.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7ffcf699-395e-4851-aa89-3ca880cd7b70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.