Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 58 | 1 |
Tytuł artykułu

Micropropagation of Eryngium campestre L. via shoot culture provides valuable uniform plant material with enhanced content of phenolic acids and antimicrobial activity

Treść / Zawartość
Warianty tytułu
Języki publikacji
An efficient micropropagation protocol for production of genetically uniform clones of Eryngium campestre L. was developed. To determine the effect of nutritional and hormonal factors on shoot and root development and bioactive compounds production, three variants of media differing in the content of macro- and micronutrients, as well as plant growth regulators of various types and concentrations were tested. The highest regeneration (100%), with over 13 shoots per explant, was induced on Murashige and Skoog (MS) medium with 1.0 mg lˉ¹ benzyladenine (BA) and 0.1 mg lˉ¹ indole-3-acetic acid (IAA). The in vitro derived shoots multiplied through axillary bud formation were rooted and transferred to an experimental plot with 78% frequency of survival. Flow cytometry showed no variation in nuclear DNA between the seedlings and micropropagated plants. Preliminary thin layer chromatography (TLC) analysis indicated that phenolic acids, saponins, flavonoids and acetylenes were present in plant biomass. Ultra high performance liquid chromatography (UHPLC) analysis revealed that shoots and roots from in vitro derived plants and root cultures maintained the ability to produce rosmarinic acid (RA), rosmarinic acid hexoside (RA-HEX) and chlorogenic acid (CGA). The highest phenolic acid content was detected in roots of in vitro regenerated plants. The extract from those roots expressed the highest inhibitory effect against bacteria Staphylococcus aureus, as well as dermatophytes Trichophyton mentagrophytes and T. rubrum.
Słowa kluczowe
Opis fizyczny
  • Department of Pharmaceutical Botany and Plant Biotechnology, Poznan University of Medical Sciences, Sw. Marii Magdaleny 14, 61-861 Poznan, Poland
  • Department of Pharmaceutical Botany and Plant Biotechnology, Poznan University of Medical Sciences, Sw. Marii Magdaleny 14, 61-861 Poznan, Poland
  • Laboratory of Molecular Biology and Cytometry, Department of Plant Genetics, Physiology and Biotechnology, University of Science and Technology, al. Prof. S. Kaliskiego 7, 85-789 Bydgoszcz, Poland
  • Laboratory of Molecular Biology and Cytometry, Department of Plant Genetics, Physiology and Biotechnology, University of Science and Technology, al. Prof. S. Kaliskiego 7, 85-789 Bydgoszcz, Poland
  • Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
  • Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
  • Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medicinal Sciences, Swiecickiego 4, 60–781 Poznan, Poland
  • ARENDRUP MC, CUENCA-ESTRELLA M, LASS-FLÖRL C, HOPE W, and the Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). 2012. Method for the determination of broth dilution minimum Inhibitory concentrations of antifungal agents for yeasts; EUCAST DEFINITIVE DOCUMENT EDef 7.2 Revision; 2012.
  • AROCKIASAMY S, and IGNACIMUTHU S. 1998. Plant regeneration from mature leaves and roots of Eryngium foetidum L., a food flavouring agent. Current Science 75: 664–666.
  • AROCKIASAMY S, PRAKASH S, and IGNACIMUTHU S. 2002. Direct organogenesis from mature leaf and petiole explants of Eryngium foetidum L. Biologia Plantarum 45: 129-132.
  • ATWATER BR. 1980. Germination, dormancy and morphology of the seeds of herbaceous ornamental plants. Seed Science Technology 8: 523–573.
  • BENNETT MD, PRICE JH, and JOHNSTON SJ. 2008. Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Annals of Botany 101: 777–790.
  • BULGAKOV VP, INYUSHKINA YV, and FEDOREYEV SA. 2012. Rosmarinic acid and its derivatives: biotechnology and applications. Critical Reviews in Biotechnology 32: 203–217.
  • CELIC A, AYDMLIK N, and ARSLAN I. 2011. Phytochemical constituents and inhibitory activity towards methicillin-resistant Staphylococcus aureus strains of Eryngium species (Apiaceae). Chemistry and Biodiversity 8: 454–459.
  • CHANDRIKA R, VYSHALI P, SARASWATHI KJT, and KALIWAL BB. 2011. Rapid multiplication of mature flowering plant of Eryngium foetidum L. by in vitro technique. IJBA 3: 114–117.
  • ERDELMEIER CA, and STICHER O. 1985. Coumarin derivatives from Eryngium campestre. Planta Medica 51(5): 407–409.
  • ERDELMEIER CA, and STICHER O. 1986. A cyclohexenone and a cyclohexadienone glycoside from Eryngium campestre. Phytochemistry 25(3): 741–743.
  • GALBRAITH DW, HARKINS KR, MADDOX JM, AYRES NM, SHARMA DP, and FIROOZABADY E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049–1051.
  • GASPAR T, KEVERS C, PENEI C, GREPPIN H, REID DM, and THORPE TA. 1996. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cellular and Developmental Biology – Plant 32: 272–289.
  • GREILHUBER J. 2008. Cytochemistry and C-value: the less-wellknown world of nuclear DNA amounts. Annals of Botany 101: 781–804.
  • GUGLIUCCI A, and MARKOWICZ-BASTOS DH. 2009. Chlorogenic acid protects paraoxonase 1 activity in high density lipoprotein from inactivation caused by physiological concentrations of hypochlorite. Fitoterapia 80: 138-142.
  • HOHMANN J, PÁLL Z, GÜNTHER G, and MÁTHÉ I. 1997. Flavonolacyl glycosides of the aerial parts of Eryngium campestre. Planta Medica 63(1): 96.
  • JEDRZEJCZYK I, and SLIWINSKA E. 2010. Leaves and seeds as material for flow cytometric estimation of the genome size of 11 Rosaceae woody species containing DNA-staining inhibitors. Journal of Botany Vol 2010, Article ID 930895.
  • KARAM NS, JAWAD FM, ARIKAT NA, and SHIBLI RA. 2003. Growth and rosmarinic acid accumulation in callus, cell suspension, and root cultures of wild Salvia fruticosa. Plant Cell Tissue and Organ Culture 73(2): 117–121.
  • KARTAL M, MITAINE-OFFER AC, ABU-ASAKER M, MIYAMOTO T, CALIS I, WAGNER H, and LACAILLE-DUBOIS MA. 2005. Two new triterpene saponins from Eryngium campestre. Chemistry and Pharmaceutical Bulletin 53(10): 1318–1320.
  • KARTAL M, MITAINE-OFFER AC, PAULULAT T, ABU-ASAKER M, WAGNER H, MIRJOLET JF, GUILBAUD N, and LACAILLE-DUBOIS MA. 2006. Triterpene saponins from Eryngium campestre. Journal of Natural Products 69: 1105–1108.
  • KARTNIG T, and WOLF J. 1993. Flavonoids from the aerial parts of Eryngium campestre. Planta Medica 59(3): 285.
  • KHOLKHAL W, ILIAS F, BEKHECHI CH, and BEKKARA FA. 2012. Eryngium maritimum: A rich medicinal plant of polyphenols and flavonoids compounds with antioxidant, antibacterial and antifungal activities. Current Research Journal of Biological Sciences 4: 437–443.
  • KIKOWSKA M, BUDZIANOWSKI J, KRAWCZYK A, and THIEM B. 2012. Accumulation of rosmarinic, chlorogenic and caffeic acids in in vitro cultures of Eryngium planum L. Acta Physologiae Plantarum 34: 2425–2433.
  • KIKOWSKA M, KĘDZIORA J, KRAWCZYK A, and THIEM B. 2015. Methyl jasmonate, yeast extract and sucrose stimulate phenolic acids accumulation in Eryngium planum L. shoot culture. Acta Biochimica Polonica 62(2): 197–2000.
  • KIKOWSKA M, THIEM B, SLIWIŃSKA E, REWERS M, KOWALCZYK M, STOCHMAL A, and OLESZEK W. 2014a. The effect of nutritional factors and plant growth regulators on micropropagation and production of phenolic acids and saponins from plantlets and adventitious root cultures of Eryngium maritimum L. Journal of Plant Growth Regulation 33: 809-818.
  • KIKOWSKA M. 2014b. Krajowe gatunki rodzaju Eryngium L. w kulturze in vitro – mikrorozmnażanie, kultury organów, ocena fitochemiczna i aktywność biologiczna. Rozprawa doktorska. Poznań.
  • KOLLAROVA K, LISKOVA D, KAKONIOVA P, and LUX A. 2004. Effect of auxins on Karwinskia humboldtiana root cultures. Plant Cell Tissue and Organ Culture 79: 213–221.
  • KRZYZANOWSKA J, JANDA B, PECIO L, STOCHMAL A, OLESZEK W, CZUBACKA A, PRZYBYS M, and DOROSZEWSKA T. 2011. Determination of polyphenols in Mentha longifolia and M. piperita field-grown and in vitro plant samples using UPLC-TQ-MS. Journal of AOAC International 94: 43–50.
  • KUSAKARI K, YOKOYAMA M, and INOMATA S. 2000. Enhanced production of saikosaponins by root culture of Bupleurum falcatum L. using two-step control of sugar concentration. Plant Cell Reports 19(11): 1115–1120.
  • KΫPELI E, KARTAL M, ASLAN S, and YESILADA E. 2006. Comparative evaluation of the anti-inflammatory and antinociceptive activity of Turkish Eryngium species. Journal of Ethnopharmacology 107: 32–37.
  • LE CLAIRE E, SCHWAIGER S, BANAIGS B, STUPPNER H, and GAFNER F. 2005. Distribution of a new rosmarinic acid derivative in Eryngium alpinum L. and other Apiaceae. Journal of Agriculture and Food Chemistry 53: 4367–4372.
  • LE COQ C, GUERVIN C, HAMEL JL, and JOLINON D. 1978. La quantite d’ADN nucleaire et la garniture chromosomique chez quelques Ombelliferes. Actes 2e Sympos Internat sur Ombelliferes. Contributions pluridisciplinairesa la systematique. pp. 281–291.
  • LEE YS, YANG TJ, PARK SU, BAEK JH, WU S, and LIM KB. 2011. Induction and proliferation of adventitious roots from Aloe vera leaf tissues for in vitro production of aloe-emodin. Plant Omics Journal 4(4): 190.
  • MAKOWCZYŃSKA J, ANDRZEJEWSKA-GOLEC E, and SLIWINSKA E. 2008. Nuclear DNA content in different plant material of Plantago asiatica L. cultured in vitro. Plant Cell Tissue and Organ Cultures 94: 65–71.
  • MARCETIC MD, PETROVIC D, MILENKOVIC MT, and NIKETIC MS. 2014. Composition, antimicrobial and antioxidant activity of the extracts of Eryngium palmatum Panic and Vis. (Apiaceae). Central European Journal of Biology 9(2): 149–155.
  • MARIE D, and BROWN SC. 1993. A cytometric exercise in plant histograms, with 2C values for 70 species. Biology of the Cell 78: 41–51.
  • MEOT-DUROS L, LE FLOCH G, and MAGNE C. 2008. Radical scavenging, antioxidant and antimicrobial activities of halophytic species. Journal of Ethnopharmacology 116(2): 258–262.
  • MURASHIGE T, and SKOOG F. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiologia Plantarum 15: 473–497.
  • MURTHYHN, HANH EJ, and PEAK KY. 2008. Adventitious roots and secondary metabolism. Chinese Journal of Biotechnology 24: 711–716.
  • NOIROT M, BARRE P, LOUARN J, DUPERRAY C, and HAMON S. 2000. Nucleus-cytosol interactions- a source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Annals of Botany 86: 309–316.
  • ORHAN I, ASLAN S, KARTAL M, SENER B, HUSNU K, and BASER C. 2008. Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food Chemistry 108: 663–668.
  • PARK SU, UDDIN MR, XU H, KIM YK. and LEE SY. 2008. Biotechnological applications for rosmarinic acid production in plant. African Journal of Biotechnology 7: 4959–4965.
  • PDR for Herbal medicines. 2000. Medicinal Economics Company, Montvale New Yersey.
  • PETERSEN M, and SIMMONDS MSJ. 2003. Rosmarinic acid. Phytochemistry 62: 121–125.
  • RODRIGUEZ-TUDELA JL, ARENDRUP MC, ARIKAN S, BARCHIESI F, BILLE J, CHRYSSANTHOU E, CUENCA-ESTRELLA M, DANNAOUI E, DENNING DW, DONNELLY JP, FEGELER W, LASS-FLÖRL C, MOORE C, RICHARDSON M, GAUSTAD P, SCHMALRECK A, VELEGRAKI A, and VERWEIJ P. 2012. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds; EUCAST DEFINITIVE DOCUMENT E.Def 9.1; 2012.
  • SLIWINSKA E, and THIEM B. 2007. Genome size stability in six medicinal plant species propagated in vitro. Biologia Plantarum 51: 556–558.
  • THIEM B, GOŚLIŃSKA O, KIKOWSKA M, and BUDZIANOWSKI J. 2010. Antimicrobial activity of three Eryngium L. species (Apiaceae). Herba Polonica 56: 52–59.
  • THIEM B, KIKOWSKA M, KRAWCZYK A, WIĘCKOWSKA B, and SLIWINSKA E. 2013. Phenolic acid and DNA contents of micropropagated Eryngium planum L. Plant Cell Tissue and Organ Culture 114: 197–206.
  • THIEM B, KIKOWSKA M, KUROWSKA A, KALEMBA D. 2011. Essential oil composition of the different parts and in vitro shoot culture of Eryngium planum L. Molecules 16: 7115–7124.
  • THIEM B, and SLIWINSKA E. 2003. Flow cytometric analysis of nuclear DNA content in cloudberry (Rubus chamaemorus L.) in vitro cultures. Plant Science 164: 129–34.
  • THIEM B, and WIATROWSKA I. 2007. Eryngium campestre L. (Field eryngo) and other species of Eryngium L. – Little know medicinal plants. Herba Polonica 53(1): 93–102.
  • TUTIN TG, HEYWOOD VH, BURGES NA, MOORE DM, VALENTINE DH, WALTERS SM, and WEBB DA. 1968. Rosaceae to Umbelliferae. In: Tutin TG (ed) Flora Europaea. vol 2. Cambridge University Press. Cambridge.
  • WANG P, SU Z, YUAN W, DENG G, and LI S. 2012. Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharmaceutical Crops 3: 99–120.
  • WU CH, DEWIR YH, HAHN EJ, and PAEK KY. 2006. Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. Journal of Plant Biology 49(3): 193–199.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.