PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 19 | 2 |

Tytuł artykułu

High-resolution MaxEnt Mmodelling of habitat suitability for maternity colonies of the barbastelle bat Barbastella barbastellus (Schreber, 1774) in Rhineland-Palatinate, Germany

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The barbastelle bat Barbastella barbastellus (Schreber, 1774), probably one of the rarest of western European bat species, has suffered from substantial population declines over the last several decades. In fact, it was believed to be extinct within the federal state of Rhineland-Palatinate (western Germany) until the discovery of a maternity colony in 2004. More reproduction sites have since been found, which demonstrates a substantial knowledge gap about the actual distribution and abundance of the species in Rhineland-Palatinate. Suitable habitats for maternity colonies are crucial for the survival of a population and knowledge of their location is critical for conservation. We modelled the suitability of habitats for use by maternity colonies in Rhineland-Palatinate based on high-resolution data of the forest structure and roosting sites of maternity colonies, using the presence-only machine learning approach MaxEnt. In addition to statistical tests of the model performance, we analysed general occurrence surveys from the last few years for evidence of barbastelle and conducted an in-situ survey on one of the sites identified as highly suitable by the model, but for which no occurrence records exist. On this site, we discovered a new maternity colony. Analysis of third-party surveys resulted in two recently discovered colonies, which shows the barbastelle's range is not restricted to the area south of the Moselle River. The results of our study along with the scattered pattern of potentially suitable locations for maternity colonies in the region challenge previous assumptions of the geographic distribution of barbastelle in Rhineland-Palatinate. This study demonstrates the potential of habitat suitability modelling in conservation ecology and the results may provide a basis for future preservation strategies in the region.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.389-398,fig.,ref.

Twórcy

autor
  • Philipps-University Marburg, Department of Geography, Environmental Informatics, Deutschhausstrasse 12, 35032 Marburg, Germany
autor
  • Philipps-University Marburg, Department of Geography, Environmental Informatics, Deutschhausstrasse 12, 35032 Marburg, Germany
autor
  • Buero fur Faunistik und Landschaftsokologie, Gustav-Stresemann-Strasse 8, 55411 Bingen am Rhein, Germany
autor
  • Buero fur Faunistik und Landschaftsokologie, Gustav-Stresemann-Strasse 8, 55411 Bingen am Rhein, Germany
autor
  • Philipps-University Marburg, Department of Geography, Environmental Informatics, Deutschhausstrasse 12, 35032 Marburg, Germany

Bibliografia

  • 1. Ancillotto, L., L. Cistrone, F. Mosconi, G. Jones, L. Boitani, and D. Russo. 2014. The importance of non-forest landscapes for the conservation of forest bats: lessons from barbastelles (Barbastella barbastellus). Biodiversity and Conservation, 24: 171–185. Google Scholar
  • 2. Bat Conservation Trust. 2010. Species Info Sheets. Bar bastelle bat. Available at http://www.bats.org.uk/data/files/Species_Info_sheets/barbastelle_11.02.13.pdf. Accessed Sep tember 16, 2017. Google Scholar
  • 3. Bellamy, C., C. Scott, and J. Altringham. 2013. Multiscale, presence-only habitat suitability models: fine-resolution maps for eight bat species. Journal of Applied Ecology, 50: 892–901. Google Scholar
  • 4. Benton, T. G., J. A. Vickery, and J. D. Wilson. 2003. Farm land biodiversity: is habitat heterogeneity the key? Trends in Ecology and Evolution, 18: 182–188. Google Scholar
  • 5. BFN [BUNDESAMT FÜR NATURSCHUTZ]. 2011. BfN Anhang-IVArten: Mopsfledermaus (Barba stella barbastellus). Available at: http://www.ffh-anhang4.bfn.de/ffh-anhang4-mopsfledermaus.html. Accessed March 3, 2017. Google Scholar
  • 6. Boyce, M. S., P. R. Vernier, S. E. Nielsen, and F. K. A. Schmiegelow. 2002. Evaluating resource selection functions. Ecological Modelling, 157: 281–300. Google Scholar
  • 7. Cyrus, E., M. Weishaar, and M. Zimmermann. 2004. First recent record of a barbastelles Barba stella barbastellus (Schreber, 1774) maternity colony in Rhineland-Palatinate. Dendrocopos Trier, 31: 9–19. Google Scholar
  • 8. Di Cola, V., O. Broennimann, B. Petitpierre, F. T. Breiner, M. D'amen, C. Randin, R. Engler, J. Pottier, D. Pio, A. Dubuis , et al. 2017. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40: 774–787. Google Scholar
  • 9. Di Febbraro, M., F. Roscioni, L. Frate, M. L. Carranza, L. De Lisio, D. De Rosa, M. Marchetti, A. Loy, and L. Brotons. 2015. Long-term effects of traditional and conservation- oriented forest management on the distribution of vertebrates in Mediterranean forests: a hierarchical hybrid modelling approach. Diversity and Distributions, 21: 1141–1154. Google Scholar
  • 10. FOA LANDSCHAFTSPLANUNG GMBH. 2014. Modellierung des Vorkommens der Mopsfledermaus und Bewertung in Bezug auf Risiken für die Ausweisung von WEA-Flächen im Rahmen der Flächennutzungsplanung. Ergänzung der Rah menstudie Windkraft im Kreis Trier-Saarburg. FOA Landschaftsplanung GmbH, Trier, Germany. Available at http://www.mosel.saar.ruwer.de/cams/core/cams_file.php?mod=b%FCrger_dateien&id=271&field=Datei. Google Scholar
  • 11. Frey-Ehrenbold, A., F. Bontadina, R. Arlettaz, and M. K. Obrist. 2013. Landscape connectivity, habitat structure and activity of bat guilds in farmland-dominated matrices. Journal of Applied Ecology, 50: 252–261. Google Scholar
  • 12. Gessner, B., and M. Weishaar. 2008. Zur Situation der Mopsfledermaus (Barbastella barbastellus) im Westen von Rheinland-Pfalz. Dendrocopos, 35: 15–34. Google Scholar
  • 13. Goerlitz, H. R., H. M. Ter Hofstede, M. R. K. Zeale, G. Jones, and M. W. Holderied. 2010. An aerial-hawking bat uses stealth echolocation to counter moth hearing. Current Biology, 20: 1568–1572. Google Scholar
  • 14. Gottfried, I., T. Gottfried, E. Fuszara, M. Fuszara, M. Ignaczak, R. Jaros, and M. Piskorski. 2015. Breeding sites of the barbastelle Barbastella barbastellus (Schreber, 1774) in Poland. North-Western Journal of Zoology, 11: 151701. Google Scholar
  • 15. Greenaway, F. 2001. The barbastelle in Britain. British Wildlife, 12: 327–335. Google Scholar
  • 16. Greenaway, F. 2004. Advice for the management of flight-lines and foraging habitats of the barbastelle bat Barbastella barbastellus. English Nature Research Report, 657: 1–28. Google Scholar
  • 17. Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135: 147–186. Google Scholar
  • 18. Haslem, A., and A. F. Bennett. 2008. Birds in Agricultural Mosaics: The Influence of Landscape Patterns and Countryside Heterogeneity. Ecological Applications, 18: 185–196. Google Scholar
  • 19. Hijmans, R., and J. Van Etten. 2015. Raster: geographic analysis and modeling with raster data. R package version 2.4-20. Available at http://CRAN.R-project.org/package=raster. Google Scholar
  • 20. Hijmans, R. J., S. Phillips, J. R. Leathwick, and J. Elith. 2012. dismo: Species distribution modeling. R package version 0.7-17. Available at http://CRAN.R-project.org/package=dismo. Google Scholar
  • 21. Hillen, J., A. Kiefer, and M. Veith. 2009. Foraging site fidelity shapes the spatial organisation of a population of female western barbastelle bats. Biological Conservation, 142: 817–823. Google Scholar
  • 22. Hillen, J., A. Kiefer, and M. Veith. 2010. Interannual fidelity to roosting habitat and flight paths by female western barbastelle bats. Acta Chiropterologica, 12: 187–195. Google Scholar
  • 23. Hillen, J., T. Kaster, J. Pahle, A. Kiefer, O. Elle, E. M. Griebeler, and M. Veith. 2011. Sex-specific habitat selection in an edge habitat specialist, the western barbastelle bat. Annales Zoologici Fennici, 48: 180–190. Google Scholar
  • 24. Hirzel, A. H., G. Le Lay, V. Helfer, C. Randin, and A. Guisan. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199: 142–152. Google Scholar
  • 25. Jueterbock, A., I. Smolina, J. A. Coyer, and G. Hoarau. 2016. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach. Ecology and Evolution, 6: 1712–1724. Google Scholar
  • 26. Kaňuch, P., Š. Danko, M. Celuch, A. Krištín, P. Pjenčák, Š. Matis, and J. Šmídt. 2008. Relating bat species presence to habitat features in natural forests of Slovakia (Central Europe). Mammalian Biology, 73: 147–155. Google Scholar
  • 27. Keith, L. B., and J. Goldsmith. 2003. The Paston great barn barbastelle story. Bat Research News, 44: 10. Google Scholar
  • 28. Kerth, G., and M. Melber. 2009. Species-specific barrier effects of a motorway on the habitat use of two threatened forest-living bat species. Biological Conservation, 142: 270–279. Google Scholar
  • 29. Landesforsten Rheinland-Pfalz. 2014. Forsteinrichtung: Geo- und Sachdaten. Landesforsten Rheinland-Pfalz, Koblenz, Germany. Google Scholar
  • 30. Lanis-Rlp. 2015. Steckbrief zur Art 1308 der FFH-Richtlinie. Mopsfledermaus (Barbastella barbastellus). Available at http://www.natura2000.rlp.de/steckbriefe/index.php?a=s&b=a&c=ffh&pk=1308. Google Scholar
  • 31. Merow, C., M. J. Smith, and J. A. Silander. 2013. A practical guide to MaxEnt for modeling species distributions: what it does, and why inputs and setting matter. Ecography, 36: 1058–1069. Google Scholar
  • 32. Moorman, C. E., K. R. Russell, G. R. Sabin, and D. C. Guynn. 1999. Snag dynamics and cavity occurrence in the South Carolina Piedmont. Forest Ecology and Management, 118: 37–48. Google Scholar
  • 33. Parker, B. J., S. Günter, and J. Bedo. 2007. Stratification bias in low signal microarray studies. BMC Bioinformatics, 8: 326. Google Scholar
  • 34. Pearson, R. G., T. P. Dawson, and C. Liu. 2004. Modelling species distributions in Britain: A hierarchical integration of climate and land-cover data. Ecography, 27: 285–298. Google Scholar
  • 35. Petersons, G., V. Vintulis, and J. Šuba. 2010. New data on the distribution of the barbastelle bat Barbastella barbastellus in Latvia. Estonian Journal of Ecology, 59: 62–69. Google Scholar
  • 36. Phillips, S. J., M. Dudík, and R.E. Schapire. 2004. A maximum entropy approach to species distribution modeling. Pp. 655–662, in Proceedings of the Twenty-First International on Computational Learning Theory, Banff, Canada. Available at: http://dl.acm.org/citation.cfm?id=1015412%5Cn http://doi.acm.org/10.1145/1015330.1015412. Google Scholar
  • 37. Phillips, S., R. Anderson, and R. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231–259. Google Scholar
  • 38. Phillips, S. J., M. Dudik, J. Elith, C. H. Graham, A. Lehmann, J. Leathwick, S. Ferrier. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19: 181–197. Google Scholar
  • 39. Piraccini, R. 2016. Barbastella barbastellus, Western barbastelle. The IUCN Red List of Threatened Species: e.T2553A 22. Available at: http://www.iucnredlist.org/details/2553/0. Google Scholar
  • 40. R CORE TEAM. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org/. Google Scholar
  • 41. Rebelo, H., and G. Jones. 2010. Ground validation of presenceonly modelling with rare species: a case study on barba stelles Barbastella barbastellus (Chiroptera: Vespertilio ni dae). Journal of Applied Ecology, 47: 410–420. Google Scholar
  • 42. Reiners, T. E., N. I. Becker, and J. A. Encarnação. 2014. Verbreitung der Bechsteinfledermaus in Hessen: Ergebnisse einer GIS-gestützten Habitatanalyse und Modellierung. Pp. 51–60, in Populationsökologie und Habitatansprüche der Bechsteinfledermaus Myotis bechsteinii. Beiträge zur Facht agung in der Trinkkuranlage Bad Nauheim, 25.–26.02. 2011 ( M. Dietz, ed.). Zarbock GmbH u. Co. KG, Frankfurt, xiv + 344 pp. Google Scholar
  • 43. Russo, D., L. Cistrone, and G. Jones. 2002. Roost selection by Barbastella barbastellus in Apennine woodlands (central Italy) and its implication for bat conservation in forest management. Bat Research News, 43: 107. Google Scholar
  • 44. Russo, D., L. Cistrone, and G. Jones. 2005. Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats Barbastella barbastellus. Ecography, 28: 769–776. Google Scholar
  • 45. Russo, D., L. Cistrone, and G. Jones. 2007. Emergence time in forest bats: the influence of canopy closure. Acta Oecologica, 31: 119–126. Google Scholar
  • 46. Russo, D., L. Cistrone, A. P. Garonna, and G. Jones. 2010. Reconsidering the importance of harvested forests for the conservation of tree-dwelling bats. Biodiversity and Conser vation, 19: 2501–2515. Google Scholar
  • 47. Russo, D., M. Di Febbraro, L. Cistrone, G. Jones, S. Smeraldo, A. P. Garonna, and L. Bosso. 2015. Protecting one, protecting both? Scale-dependent ecological differences in two species using dead trees, the rosalia longicorn beetle and the barbastelle bat. Journal of Zoology (London), 297: 165–175. Google Scholar
  • 48. Rydell, J., and W. Bogdanowicz. 1997. Barbastella barbastellus. Mammalian Species, 557: 1–8. Google Scholar
  • 49. Rydell, J., C. Natuschke, A. Theuer, E. Peter, G. Natuschke, A. Theiler, and P. E. Zingg. 1996. Food habits of the barbastelle bat Barbastella barbastellus. Ecography, 19: 62–66. Google Scholar
  • 50. Sierro, A. 1999. Habitat selection by barbastelle bats (Barbastella barbastellus) in the Swiss Alps (Valais). Journal of Zoology (London), 248: 429–432. Google Scholar
  • 51. Sierro, A., and R. Arlettaz. 1997. Barbastelle bats (Barbastella spp.) specialize in the predation of moths: implications for foraging tactics and conservation. Acta Oecol ogica, 18: 91–106. Google Scholar
  • 52. Smith, C. Y., I. G. Warkentin, and M. T. Moroni. 2008. Snag availability for cavity nesters across a chronosequence of post-harvest landscapes in western Newfoundland. Forest Ecology and Management, 256: 641–647. Google Scholar
  • 53. Steinhauser, D., F. Burger, U. Hoffmeister, G. Maetz, T. Teige, P. Steinhauser, and I. Wolz. 2002. Untersuchungen zur Ökologie der Mopsfledermaus, Barbastella barbastellus (Schreber, 1774), und der Bechsteinfledermaus, Myotis bech steinii (Kuhl, 1817), im Süden des Landes Brandenburg. Pp. 81–98, in Ökologie, Wanderungen und Genetik von Fledermäusen in Wäldern — Untersuchungen als Grundlage für den Fledermausschutz. Schriftenreihe Landschaft spflege Naturschutz 71 ( A. Meschede, K.-G. Heller, and P. Boye, eds.). Landwirtschaftsvlg, Münster, xiv + 288. Google Scholar
  • 54. Warren, D. L., A. N. Wright, S. N. Seifert, and H. B. Shaffer. 2014. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity and Distributions, 20: 334–343. Google Scholar
  • 55. Wisz, M. S., R. J. Hijmans, A. T. Peterson, C. H. Graham, A. Guisan, and NCEAS PREDICTING SPECIES DISTRIBUTION WORKING GROUP. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14: 763–773. Google Scholar
  • 56. Yackulic, C. B., R. B. Chandler, E. F. Zipkin, J. A. Royle, J. D. Nichols, E. H. Campbell Grant, and S. Veran. 2013. Presence-only modelling using MAXENT: when can we trust the inferences? Methods in Ecology and Evolution, 4: 236–243 Google Scholar
  • 57. Zeale, M. R. K., I. Davidson-Watts, and G. Jones. 2012. Home range use and habitat selection by barbastelle bats (Barbastella barbastellus): implications for conservation. Journal of Mammalogy, 93: 1110–1118. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-7fd88227-b65e-4806-b23f-c86036f8cd87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.