PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 3 |

Tytuł artykułu

Numerical and experimental study on seakeeping performance of a high-speed trimaran with T-foil in head waves

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The longitudinal motion characteristics of a slender trimaran equipped with and without a T-foil near the bow are investigated by experimental and numerical methods. Computational fluid dynamics ( CFD) method is used in this study. The seakeeping characteristics such as heave, pitch and vertical acceleration in head regular waves are analyzed in various wave conditions. Numerical simulations have been validated by comparisons with experimental tests. The influence of large wave amplitudes and size of T-foil on the longitudinal motion of trimaran are analyzed. The present systematic study demonstrates that the numerical results are in a reasonable agreement with the experimental data. The research implied that the longitudinal motion response values are greatly reduced with the use of T-foil

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.65-77,fig.,ref.

Twórcy

autor
  • College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
autor
  • College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China

Bibliografia

  • 1. Davis, M.R., Holloway, D.S.: A comparison of the motions of trimarans, catamarans and monohulls. Australian Journal of Mechanical Engineering, 4(2), (2007). pp. 183-195.
  • 2. Mynard, T. : Numerical and experimental study of wave resista nce for t ri ma ra n hu l l forms. Vol.1, (20 08), pp.117-132 .
  • 3. Brizzolara, S., Capasso, M., Ferrando, M., et al. : Trimaran hull design for fast ferry applications. Int. Conference on Ships Design and Shipping, Nav. 2003.
  • 4. Bertorello, C., Bruzzone, D., Cassella, P., et al. : Trimaran model test results and comparison with different high speed craft. Practical Design of Ships & Other Floating Structures, 1, (2001), pp. 143-149.
  • 5. Hebblewhite, K., Sahoo, P.K. and Doctors, L.J.: A case study: theoretical and experimental analysis of motion characteristics of a trimaran hull form, Ships and Offshore Structures, 2:2, (2007) , pp.149 – 156.
  • 6. Faltinsen, O.M. : Numerical prediction of ship motions at high forward speed. Phil. Trans. R. Soc. , London Ser. A, 334, (1991), pp. 241-252.
  • 7. Salvesen, N., Tuck, E.O., Faltinsen, O.M. : Ship Motion and Sea Loads. SNAME, 1970.
  • 8. Wei, Y.F., Duan, W.Y., Ma, S. : Trimaran motions and hydrodynamic interaction of side hulls, 9th International Conference on Fast Sea Transportation, FAST 2007, pp. 413-421.
  • 9. Wang, S. M., Ma, S., & Duan, W. Y. : Seakeeping optimization of trimaran outrigger layout based on NSGA-II. Applied Ocean Research, 78, (2018), pp. 110-122.
  • 10. Sato, Y., Uzawa, K., Miyata, H. : Validation of motion prediction method for trimaran vessels. International Conference on Numerical Ship Hydrodynamics 2007, (Vol.5).
  • 11. Wu, C.S, Zhou, D.C, Gao, L., et al. :). CFD computation of ship motions and added resistance for a high speed trimaran in regular head waves, International Journal of Naval Architecture and Ocean Engineering, 3(1), (2011), pp. 105-110. doi: https://doi.org/10.2478/ijnaoe-2013-0051.
  • 12. Poundra, G.A.P., Utama, I.K.A.P., Hardianto, D., et al. : Optimizing trimaran yacht hull configuration based on resistance and seakeeping criteria. Procedia Engineering, 194, (2017), pp. 112-119.
  • 13. Fang, C.C., Chan, H.S. : An investigation on the vertical motion sickness characteristics of a high-speed catamaran ferry. Ocean Engineering, 34(14), (2007), pp. 1909-1917.
  • 14. Esteban, S., Giron-Sierra, J.M., Andres-Toro, B.D., et al. : Fast ships models for seakeeping improvement studies using flaps and t-foil. Mathematical & Computer Modelling,41(1), (2005), pp. 1-24.
  • 15. Haywood A.J., Duncan A.J., Klaka K.P. et al. : The development of a ride control system for fast ferries. Control Eng. Pract. 3(5), (1995), pp. 695-702.
  • 16. Giron-Sierra J.M., Esteban S, Andres D., et al. : Experimental study of controlled flaps and T-foil for comfort improvement of a fast ferry. In: IFAC Proceedings control applications in marine systems, vol. 34, (2001), pp. 261-266.
  • 17. Zong, Z., Sun, Y., Jiang, Y. : Experimental study of controlled T-foil for vertical acceleration reduction of a trimaran. Journal of Marine Science & Technology, (2018), pp. 1-12.
  • 18. CD-Adapco. User guide of STAR-CCM+ , Version 11.0.2, 2016.
  • 19. Patankar, S.V., Spalding, D.B. : A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat. Mass Transf. 15 (2), (2005), pp. 1787-1806.
  • 20. Tezdogan, T., Demirel, Y.K., Kellett, O., et al. : Full-scale unsteady RANS CFD simulations of ship behavior and performance in head seas due to slow steaming. Ocean Eng. 97, (2015), pp. 186-206.
  • 21. International Towing Tank Conference (ITTC) : Practical guidelines for ship CFD applications. In: Proceedings of the 26th ITTC, Rio de Janeiro, Brazil, 2011b.
  • 22. Choi, J., Yoon, S.B. : Numerical simulations using momentum source wave-maker applied to RANS equation model. Coast. Eng. 56 (10), (2009), pp. 1043-1060.
  • 23. Sun, H.B., Jing, F.M., Jiang, Y., et al. : Motion prediction of catamaran with a semi-submersible bow in wave. Polish Maritime Research 1(89) , Vol. 23, 2016 , pp. 37-44.
  • 24. Stern, F., Wilson, R., Shao, J. : Quantitative V&V of CFD simulations and certification of CFD codes. International Journal for Numerical Methods in Fluids, 50(11), (2006), pp. 1335-1355.
  • 25. Sun, X.S., Yao, C.B., Xiong, Y., et al.: Numerical and experimental study on seakeeping performance of a swath vehicle in head waves. Applied Ocean Research, 68, (2017), pp. 262-275.
  • 26. International Towing Tank Conference (ITTC), Ocean Engineering Committee : Final report and recommendation to the 27th ITTC. In: Proceedings of the 27th ITTC, Copenhagen, 2014.
  • 27. Bøckmann, A., Pakozdi, C., Kristiansen, T., et al. : An Experimental and Computational Development of a Benchmark Solution for the Validation of Numerical Wave Tanks. ASME 2014, International Conference on Ocean, Offshore and Arctic Engineering (2014), Vol.2, pp. V002T08A092-V002T08A092.
  • 28. Kim, M., Hizir, O., Turan, O., et al.: Estimation of added resistance and ship speed loss in a seaway. Ocean Engineering 141, (2017), pp. 465-476.
  • 29. Kim, M., Turan, O., Day, S., et al. : Numerical studies on added resistance and ship motions of KVLCC2 in waves. Ocean Engineering 140, (2018), pp. 466-476.
  • 30. Hizir, O., Kim, M., Turan, O., et al. : Numerical studies on non-linearity of added resistance and ship motions of KVLCC2 in short and long waves. International Journal of Naval Architecture and Ocean Engineering ,(2018). https://doi.org/10.1016/j.ijnaoe.2018.02.015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7f6ceee8-28ae-435d-a789-87f92158cff8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.