Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 70 | 1 |
Tytuł artykułu

Correlation between EEG–EMG coherence during isometric contraction and its imaginary execution

Warianty tytułu
Języki publikacji
To assess the similarity between cortical activities observed during actual and imaginary motor tasks, we evaluated electroencephalography–electromyography (EEG–EMG) coherence during motor task execution (ME) and the same task-related EEG power increase (TRPI) during kinesthetic motor imagery (MI). EEGs recorded at the vertex and EMGs recorded at the right tibialis anterior muscle (TA) were analyzed in 13 healthy subjects. Subjects were requested to perform: (1) isometric TA contraction, (2) imagery of the same movement without overt motor behavior, and (3) rest without MI. The results show significant EEG–EMG coherence during ME, as well as TRPI during both ME and MI tasks within a similar 14–30 Hz band. The magnitude of EEG–EMG coherence and TRPI varied among the subjects. Intersubject analysis revealed a significant correlation between EEG–EMG coherence and TRPI. These results support the hypothesis that ME and MI tasks involve overlapping neural networks in the perirolandic cortical areas.
Słowa kluczowe
Opis fizyczny
  • School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, Kanagawa, Japan
  • School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, Kanagawa, Japan
  • Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
  • Keio University Tsukigase Rehabilitation Center, Shizuoka, Japan
  • Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
  • School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, Kanagawa, Japan
  • Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
  • Baker MR, Baker SN (2003) The effect of diazepam on motor cortical oscillations and corticomuscular coherence studied in man. J Physiol 546: 931-942.
  • Baker SN, Olivier E, Lemon RN (1997) Coherent oscilla­tions in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 501 : 225­241.
  • Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489: 917-924.
  • Doppelmayr M, Klimesch W, Pachinger T, Ripper B (1998) Individual differences in brain dynamics: important implications for the calculation of event-related band power. Biol Cybern 79: 49-57.
  • Ersland L, Rosen G, Lundervold A, Smievoll AI, Tillung T, Sundberg H, Hugdahl K (1996) Phantom limb imaginary fingertapping causes primary motor cortex activation: an fMRI study. Neuroreport 8: 207-210.
  • Gross J, Tass PA, Salenius S, Hari R, Freund HJ, Schnitzler A (2000) Cortico-muscular synchronization during iso­metric muscle contraction in humans as revealed by mag- netoencephalography. J Physiol (Lond ) 527: 623-631
  • Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1998) Using electroencephalography to study functional coupling between cortical activity and electromyograms during vol­untary contractions in humans. Neurosci Lett 241: 5-8.
  • Hjorth B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39: 526-530.
  • Jackson A, Spinks RL, Freeman TC, Wolpert DM, Lemon RN (2002) Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation. J Physiol 541: 685-699.
  • Jasper HH, Penfield W (1949) Electrocorticograms in man: effect of the voluntary movement upon the electrical activity of the precentral gyrus. Arch. Psychiat. Z Neurol 183: 163-174.
  • Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79: 81-93.
  • Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P, Leocani L, Hallett M (1998) Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol 109: 50-62.
  • Mima T, Hallett M (1999) Corticomuscular coherence: a review. J Clin Neurophysiol 16: 501-511.
  • Mima T, Steger J, Schulman AE, Gerloff C, Hallett M (2000) Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clin Neurophysiol 111: 326-337.
  • Neubauer AC, Grabner RH, Freudenthaler HH, Beckmann JF, Guthke J (2004) Intelligence and individual differ­ences in becoming neurally efficient. Acta Psychol (Amst) 116: 55-74.
  • Neuper C, Scherer R, Reiner M, Pfurtscheller G (2005) Imagery of motor actions: Differential effects of kines- thetic and visual-motor mode of imagery in single-trial EEG. Cogn Brain Res 25: 668-677.
  • Neuper C, Pfurtscheller G (1996) Post-movement synchro­nization of beta rhythms in the EEG over the cortical foot area in man. Neurosci Lett 216: 17-20.
  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110: 1842-1857.
  • Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R (2003) 'Thought'--control of functional electrical stimulation to restore hand grasp in a patient with tetra­plegia. Neurosci Lett 351: 33-36.
  • Pfurtscheller G, Neuper C, Brunner C, da Silva FL (2005) Beta rebound after different types of motor imagery in man. Neurosci Lett 378: 156-159.
  • Pfurtscheller G, Solis-Escalante T (2009) Could the beta rebound in the EEG be suitable to realize a "brain switch"? Clin Neurophysiol 120: 24-29.
  • Pohja M, Salenius S (2003) Modulation of cortex-muscle oscillatory interaction by ischaemia-induced deafferenta- tion. Neuroreport 14: 321-324.
  • Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, di Prampero PE (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional mag­netic resonance imaging study. J Neurosci 16: 7688­7698.
  • Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM (1989) The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53: 1-31.
  • Roth M, Decety J, Raybaudi M, Massarelli R, Delon-Martin C, Segebarth C, Morand S, Gemignani A, Décorps M, Jeannerod M (1996) Possible involvement of primary motor cortex in mentally simulated movement: a func­tional magnetic resonance imaging study. Neuroreport 7: 1280-1284.
  • Salenius S, Portin K, Kajola M, Salmelin R, Hari R (1997) Cortical control of human motoneuron firing during isometric contraction. J Neurophysiol 77: 3401-3405
  • Schnitzler A, Salenius S, Salmelin R, Jousmaki V, Hari R (1997) Involvement of primary motor cortex in motor imagery: a neuromagnetic study. Neuroimage 6: 201­208.
  • Sharbrough F, Chatrian GE, Lesser RP, Luders H, Nuwer M, Picton W (1991) American Electroencephalographs Society guidelines for standard electrode position nomen­clature. J Clin Neurophysiol 8: 200-202.
  • Yao W, Fuglevand RJ, Enoka RM (2000) Motor-unit syn­chronization increases EMG amplitude and decreases force steadiness of simulated contractions. J Neurophysiol 83: 441-452
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.