PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 62 | 1 |
Tytuł artykułu

The dorsal shell wall structure of Mesozoic ammonoids

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of pristine preserved shells of Mesozoic Ammonoidea shows different types of construction and formation of the dorsal shell wall. We observe three major types: (i) The vast majority of Ammonoidea, usually planispirally coiled, has a prismatic reduced dorsal shell wall which consists of an outer organic component (e.g., wrinkle layer), which is the first layer to be formed, and the subsequently formed dorsal inner prismatic layer. The dorsal mantle tissue suppresses the formation of the outer prismatic layer and nacreous layer. With the exception of the outer organic component, secretion of a shell wall is omitted at the aperture. A prismatic reduced dorsal shell wall is always secreted immediately after the hatching during early teleoconch formation. Due to its broad distribution in (planispiral) Ammonoidea, the prismatic reduced dorsal shell wall is probably the general state. (ii) Some planispirally coiled Ammonoidea have a nacreous reduced dorsal shell wall which consists of three mineralized layers: two prismatic layers (primary and secondary dorsal inner prismatic layer) and an enclosed nacreous layer (secondary dorsal nacreous layer). The dorsal shell wall is omitted at the aperture and was secreted in the rear living chamber. Its layers are a continuation of an umbilical shell doubling (reinforcement by additional shell layers) that extends towards the ventral crest of the preceding whorl. The nacreous reduced dorsal shell wall is formed in the process of ontogeny following a prismatic reduced dorsal shell wall. (iii) Heteromorph and some planispirally coiled taxa secrete a complete dorsal shell wall which forms a continuation of the ventral and lateral shell layers. It is formed during ontogeny following a prismatic reduced dorsal shell wall or a priori. The construction is identical with the ventral and lateral shell wall, including a dorsal nacreous layer. The wide distribution of the ability to form dorsal nacre indicates that it is a plesiomorphic trait which either was passed on from gyrocone ammonoid ancestors or (re-)developed in post-Triassic ammonoids.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
62
Numer
1
Opis fizyczny
p.59-96,fig.,ref.
Twórcy
Bibliografia
  • Bandel, K. 1977. Übergänge von der Perlmutter-Schicht zu prismatischen Schichttypen bei Mollusken. Biomineralization Research Reports 9: 28–47.
  • Bayer, U. 1974. Die Runzelschicht – ein Leichtbauelement der Ammonitenschale. Paläontologische Zeitschrift 48: 6–15.
  • Birkelund, T. 1967. Submicroscopic shell structures in early growth-stages of Maastrichtian ammonites (Saghalinites and Scaphites). Bulletin of the Geological Society of Denmark 17: 95–101.
  • Birkelund, T. 1980. Ammonoid shell structure. In: M.R. House and J.R. Senior (eds.), The Ammonoidea, 177–214. Academic Press, New York.
  • Birkelund, T. and Hansen, H.J. 1968. Early shell growth and structures of the septa and the siphuncular tube in some Maastrichtian ammonites. Bulletin of the Geological Society of Denmark 18: 95–101.
  • Birkelund, T. and Hansen, H.J. 1974. Shell ultrastructures of some Maastrichtian Ammonoidea and Coleoidea and their taxonomic implications. Kongelige Danske Videnskabernes Selskab Biologiske Skrifter 20: 1–34.
  • Birkelund, T. and Hansen, H.J. 1975. Further remarks on the post-embryonic Hypophylloceras shell. Bulletin of the Geological Society of Denmark 24: 87–92.
  • Blind, W. 1975. Über Entstehung und Funktion der Lobenlinie bei Ammonoideen. Paläontologische Zeitschrift 49: 254–267.
  • Blind, W. 1976. Die ontogenetische Entwicklung von Nautilus pompilius (Linné). Palaeontographica A 153: 117–160.
  • Bucher, H., Chirat, R., and Guex, J. 2003. Morphogenetic origin of radial lirae and mode of shell growth in Calliphylloceras (Jurassic Ammonoidea). Eclogae Geologicae Helvetiae 96: 495–502.
  • Bucher, H., Landman N.H., Klofak S.M., and Guex J. 1996. Mode and rate of growth in Ammonoids. In: N.H. Landman, K. Tanabe, and R.A. Davis (eds.), Ammonoid Paleobiology. Topics in Geobiology 13: 407–461. Plenum Press, New York.
  • Carter, J.G. and Clark, G.R. II 1985. Classification and phylogenetic significance of mollusk shell microstructures. In: T.W. Broadhead (ed.), Mollusk, Note for a Short Course. Studies in Geology 13, 50–71. University of Tennessee, Tennessee.
  • Carter, J.G., Bandel, K., de Buffrénil, V., Carlson, S.J., Castanet, J., Crenshaw, M.A., Dalingwater, J.E., Francillon-Vieillot, H., Géraudie, J., Meunier, F.J., Mutvei, H., de Ricqlès, A., Sire, J.Y., Smith, A.B., Wendt, J., Williams, A., and Zylberberg, L. 1989. Glossary of skeletal biomineralization. In: J.G. Carter (ed.), Skeletal Biomineralisation: Patterns, Processes and Evolutionary Trends, 609–671. Van Nostrand Reinhold, New York.
  • Checa, A. 1994. A model for the morphogenesis of ribs in ammonites inferred from associated microsculptures. Palaeontology 37: 863–888.
  • Cochran, J.K., Kallenberg, K., Landman, N.H., Harries, P.J., Weinreb, D. Turekian, K.K., Beck, A.J., and Cobban, W.A. 2010. Effect of diagenesis on the Sr, O, and C isotope composition of late Cretaceous molluscs from the Western Interior Seaway of North America. American Journal of Science 310: 69–88.
  • Cuif, J.-P., Dauphin, Y., Howard, L, Nouet, J., and Salome, M. 2011. Is the pearl layer a reverse shell? A re-examination of the theory of the pearl formation through physical characterizations of pearl and shell development stages in Pinctada margaritifera. Aquatic Living Resources 24: 411–424.
  • Doguzhaeva, L. 1980. New data on the shell wall structure in ammonoids. Doklady, Earth Science Sections 254: 238–241.
  • Doguzhaeva, L. 1981. The wrinkle-layer of the ammonoid shell. Paleontological Journal 15: 26–35.
  • Doguzhaeva, L. 2002. Adolescent bactritoid, orthoceroid, ammonoid and coleoid shells from the Upper Carboniferous and Lower Permian of the South Urals. Abhandlungen der Geologischen Bundesanstalt 57: 9–55.
  • Doguzhaeva, L. 2012. Functional significance of parabolae, interpreted on the basis of shell morphology, ultrastructure and chemical analyses of the Callovian ammonite Indosphinctes (Ammonoidea: Perisphinctidae), Central Russia. Revue de Paléobiologie, Genève 11: 89–101.
  • Doguzhaeva, L. and Mikhailova, J. 1982. The genus Luppovia and the phylogeny of Cretaceous heteromorphic ammonoids. Lethaia 15: 55–65.
  • Doguzhaeva, L. and Mutvei, H. 1986. Functional interpretation of inner shell layers in Triassic ceratid ammonids. Lethaia 19: 195–209.
  • Doguzhaeva, L. and Mutvei, H. 1989. Ptychoceras—a heteromorphic lytoceratid with truncated shell and modified ultrastructure (Mollusca: Ammonoidea). Paleontographica A 208: 91–121.
  • Doguzhaeva, L. and Mutvei, H. 1991. Organization of the soft body in Aconoeceras (Ammonitina), interpreted on the basis of shell morphology and muscle-scars. Paleontographica A 218: 17–38.
  • Doguzhaeva, L. and Mutvei, H. 1993a. Shell ultrastructure, muscle-scars, and buccal apparatus in ammonoids. Geobios Mémoire Special 15: 111–119.
  • Doguzhaeva, L. and Mutvei, H. 1993b. Structural features in Cretaceous ammonoids indicative of semi-internal or internal shells. In: M.R. House (ed.), The Ammonoidea: Environment, Ecology, and Evolutionary Change. Systematics Association Special Volume 47, 99–104. Clarendon Press, Oxford.
  • Doguzhaeva, L., Bengtson, S., and Mutvei, H. 2010. Structural and morphological indicators of mode of life in the Aptian lytoceratid ammonoid Eogaudryceras. In: K. Tanabe, Y. Shigeta, T. Sasaki, and H. Hirano (eds.), Cephalopods—Present and Past, 123–130. Tokai University Press, Tokyo.
  • Drobniewski, A. 2014. Vergleichende Untersuchungen zum paläopathologischen Phänomen der forma aegra aptycha bei Cleoniceras (Ammonoidea) aus der Unterkreide von Madagaskar. 185 pp. Unpublished M.Sc. Thesis, Freie Universität, Berlin.
  • Drushits, V.V . and Khiami, N. 1970. Structure of the septa, protoconch walls and initial whorls in early Cretaceous ammonites. Paleontological Journal 4: 26–38.
  • Drushits, V.V., Doguzhayeva, L.A., and Lominadze, T.A. 1977. Internal structural features of the shell of Middle Callovian ammonites. Paleontological Journal 11: 271–284.
  • Drushits, V.V., Doguzhayeva, L.A., and Mikhaylova, I.A. 1978. Unusual coating layers in ammonites. Paleontological Journal 12: 174–182.
  • Engeser, T. and Keupp, H. 2002. Phylogeny of the aptychi-possessing Neoammonoidea (Aptychophora nov., Cephalopoda). Lethaia 34: 79–96.
  • Erben, H.K. and Reid, R.E.H. 1971. Ultrastructure of shell, origin of conellae and siphuncular membranes in an ammonite. Biomineralisation 3: 22–31.
  • Erben, H.K., Flajs, G., and Siehl, A. 1968. Ammonoids: Early ontogeny of ultramicroscopial shell structure. Nature 219: 396–398.
  • Erben, H.K., Flajs, G., and Siehl, A. 1969. Die frühontogenetische Entwicklung der Schalenstruktur ectocochleater Cephalopoden. Palaeonto graphica A 132: 1–54.
  • Fleury, C., Marin, F., Marie, B., and Lebel, J.-M. 2008. Shell repair process in the green ormer Haliotis tuberculata: A histological and microstructural study. Tissue Cell 40: 207–218.
  • Funabara, D., Ohmori, F., Kinoshita, S., Koyama, H., Mizutani, S., Ota, A., Osakabe, Y., Nagai, K., Maeyama, K., Okamoto, K., Kanoh, S. Asakawa, S., and Watabe, S. 2014. Novel genes participating in the formation of prismatic and nacreous layers in the pearl oyster as revealed by their tissue distribution and RNA interference knockdown. PLoS ONE 9: e84706.
  • Hölder, H. 1952. Über Gehäusebau, insbesondere Hohlkiel Jurassicher Ammoniten. Palaeontographica A 102: 18–48.
  • Hölder, H. 1973. Miscelleana cephalopodica. Münsterländer Forschungshefte Geologie Paläontologie 29: 39–76.
  • House, M.R. 1971. The goniatite wrinkle-layer. Smithsonian Contributions to Paleobiology 3: 23–32.
  • House, M.R. 1993. Fluctuations in ammonoid evolution and possible environmental controls. In: M.R. House (ed.), The Ammonoidea: Environment, Ecology, and Evolutionary change. The Systematics Association Special Volume 47, 13–34. Clarendon Press, Oxford.
  • Howarth, M.K. 1975. The shell structure of the Liassic ammonite family Dactylioceratidae. Bulletin of the British Museum (Natural History) 26: 45–67.
  • Jackson, A.P., Vincent, J.F.V., and Turner, R.M. 1988. The mechanical design of nacre. Proceedings of the Royal Society B Biological Sciences 234: 415–440.
  • Joubert, C., Piquemal, D., Marie, B., Manchon, L., Pierrat, F., Zanella-Cléon, I., Cochennec-Laureau, N., Gueguen, Y., and Montagnani, C. 2010. Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization. BMC Genomics 11: 613.
  • Keupp, H. 1977. Paläopathologische Normen bei Amaltheiden (Ammonoidea) des Fränkischen Lias. Jahrbuch der Coburger Landesstiftung 1977: 263–280.
  • Keupp, H. 2000. Ammoniten – Paläbiologische Erfolgsspiralen. 165 pp. Thorbecke Verlag, Stuttgart.
  • Keupp, H. 2008. Desmoceras (Pseudouhligella) intrapunctatum n. sp. (Ammonoidea) aus dem unter-Albium von NW-Madagaskar mit Ritzstreifen. Paläontologische Zeitschrift 82: 437–447.
  • Keupp, H. 2012. Atlas zur Paläopathologie der Cephalopoden. Berliner paläobiologische Abhandlungen 12: 1–390.
  • Korn, D. 1985. Runzelschicht und Ritzstreifung bei Clymenien (Ammonoidea, Cephalopoda). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1985 (9): 533–541.
  • Korn, D., Klug, C., and Mapes, R. 2014. The coarse wrinkle layer of Palaeozoic ammonoids: New evidence from the Early Carboniferous of Morocco. Palaeontology 57: 771–781.
  • Klug, C., Korn, D., Richter, U., and Urlichs, M. 2004. The black layer in cephalopods from the German Muschelkalk (Triassic). Palaeontology 47: 1407–1425.
  • Kulicki, C. 1979. The ammonite shell: Its structure, development, and biological significance. Acta Palaeontologica Polonica 39: 97–142.
  • Kulicki, C. 1996. Ammonoid Shell Microstructure. In: N.H. Landman, K. Tanabe, and R.A. Davis (eds.), Ammonoid Paleobiology. Topics in Geobiology 13, 65–101. Plenum Press, New York.
  • Kulicki, C. and Tanabe, K. 1999. The ultrastructure of the dorsal shell wall of Mesozoic ammonoids. Berichte der Geologischen Bundesanstalt 46: 69.
  • Kulicki, C., Landman, N.H., Heany, M.J., Mapes, R.H., and Tanabe, K. 1999. Morphology of early whorls of goniatites from the Carboniferous Buckhorn Asphalt (Oklahoma) with aragonitic preservation. Berichte der Geologischen Bundesanstalt 46: 68.
  • Kulicki, C., Landman, N.H., Heany, M.J., Mapes, R.H., and Tanabe, K. 2002. Morphology of early whorls of goniatites from the Carboniferous Buckhorn Asphalt (Oklahoma) with aragonitic preservation. Abhandlungen der Geologischen Bundesanstalt Wien 57: 205–224.
  • Kulicki, C., Tanabe, K., Landman, N.H., and Kaim, A. 2016. Ammonoid shell microstructure. In: C. Klug, D. Korn, K. De Baets, I. Kruta, and R.H. Mapes (eds.), Ammonoid Paleobiology: From Anatomy to Ecology. Topics in Geobiology 43: 321–357. Springer, Dordrecht.
  • Kulicki, C., Tanabe, K., Landman, N.H., and Mapes R.H. 2001. Dorsal shell wall in ammonoids. Acta Palaeontologica Polonica 46: 23–42.
  • Landman, N.H. 1987. Ontogeny of Upper Cretaceous (Turonian–Santonian) scaphitid ammonites from the Western Interior of North America: systematics, developmental patterns, and life history. Bulletin of the American Museum of Natural History 185: 117–241.
  • Lehman, U. 1976. Ammoniten. Ihr Leben und ihre Umwelt. 171 pp. Ferdinand Enke Verlag, Stuttgart.
  • Lehman, U. 1990. Ammonoideen, Leben zwischen Skylla und Charybdis. In: H.K. Erben, G. Hillmer, and H. Ristedt (eds.), Haeckel-Bücherei 2, 1–258. Ferdinand Enke Verlag, Stuttgart.
  • Marie, B., Joubert, C., Tayalé, A., Zanella-Cléon, I., Belliard, C., Piquemal, D., Cochennec-Laureau, N., Marin, F., Gueguen, Y., and Montagnani, C. 2012. Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proceedings of the National Academy of Sciences 109: 20986–20991.
  • Mironenko, A. 2015. Wrinkle layer and supracephalic attachment area: Implications for ammonoid paleobiology. Bulletin of Geosciences 90: 389–416.
  • Palframan, D.F.B. 1967. Mode of early shell growth in the ammonite Promicroceras marstonense SPATH. Nature 216: 1128–1130.
  • Radtke, G. and Keupp, H. 2016. Imbricational radial sculpture: A convergent feature within externally shelled cephalopods. Paleontology 59: 409–421.
  • Radtke, G., Hoffmann, R., and Keupp, H. 2016. Form and formation of flares and parabolae based on new observations of the internal shell structure in lytoceratid and perisphinctid ammonoids. Acta Palaeontologica Polonica 61: 503–517.
  • Ristedt, H. 1971. Zum Bau der orthoceriden Cephalopoden. Palaeontographica A 137: 155–195.
  • Rouget, I., Neige, P., and Dommergues, J.L. 2004. L’analyse phylogénétique chez les ammonites: état des lieux et perspectives. Bulletin de la Société Géologique de France 175: 507–512.
  • Senior, J.R. 1971. Wrinkle-layer structures in Jurassic ammonites. Palaeontology 14: 107–113.
  • Sprey, A.M. 2002. Early ontogeny of three Callovian ammonite genera (Binatisphinctes, Kosmoceras (Spinikosmoceras) and Hecticoceras) from Ryazan (Russia). Abhandlungen der Geologischen Bundesanstalt 57: 225–255.
  • Tozer, E.T. 1972. Observations on the shell structure of Triassic ammonoids. Palaeontology 15: 637–654.
  • Walliser, O.H. 1970. Über die Runzelschicht bei Ammonoidea. Göttinger Arbeiten für Geologie und Paläontologie 5: 115–126.
  • Yacobucci, M.M. 2016. Macroevolution and paleobiogeography of Jurassic–Cretaceous ammonoids. In: C. Klug, D. Korn, K. De Baets, I. Kruta, and R.H. Mapes (eds.), Ammonoid Paleobiology: From Anatomy to Ecology. Topics in Geobiology 44: 189–228. Springer, Dordrecht.
  • Zakharov, Y.D. 1996. Orthoceratid and ammonoid shell structure: Its bearing on cephalopod classification. Bulletin of the National Science Museum, Series C 1: 11–35.
  • Zakharov, Y.D. and Grabovskaya, V.S. 1984. The shell structure and stages in the development of the genus Zelandites (Lytoceratida). Paleontological Journal 18: 9–21.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-7f66ec6e-760a-4833-a7ca-5dbc9ec4ee22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.