PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 62 | 1 |

Tytuł artykułu

Water activity in biological system - a review

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Water deserves a major attention by researchers dealing with biological systems and related materials, like food, since it is ubiquitous and can be used like a “native” probe to garner information about the hosting system, provided it may be freely displaced across. Its thermodynamic potential, namely, the water activity, aW, is related to that of the other compounds of the system considered via the Gibbs-Duhem relationship refl ecting the extent of the residual availability of water to solvate further solutes and sustain the molecular mobility of the bio-polymeric compounds. As for the experimental approaches to aW, this short review re-addresses the reader to other publications, while devotes a section to the Knudsen thermo-gravimetry that was used by the authors to determine the desorption isotherms of many food systems and related aqueous compounds. The paper remarks the importance of a preliminary assessment of water mobility and recalls the concept of “critical aW“ that takes into account the reduced mobility of water molecules in the vicinity of the glass transition. This opens the question of the reliability of sorption isotherms which encompass a wide aW range and the interpretation of the observed adsorption/desorption hysteresis. The multi-phase character of many biological systems is another issue of interest related to the reliability of the experimental approaches to aW. As examples of the role of aW on the stability of bio-systems and on the practice of a technological treatment, protein unfolding and osmo-dehydration of fruit pulps are reported.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

62

Numer

1

Opis fizyczny

p.5-13,fig.,ref.

Twórcy

autor
  • DISTAM, University of Milan, Via Celoria 2, 20133 Milan, Italy
autor

Bibliografia

  • 1. Barbosa-Cànovas G.V., Fontana Jr, A.J., Schmidt S.J., Labuza T.P., Water Activity in Foods: Fundamentals and Applications. 2007, IFT Press Series, Blackwell Publ.
  • 2. Ben-Naim A., Molecular Theory of Water and Aqueous Solutions. Part I: Understanding Water. 2009, World Scientifi c Publ. Co, N.J.
  • 3. Brandts J.F., in: Structure and Stability of Biological Macromolecules, 1969 (eds. S.N. Timasheff, G.D. Fasman). Marcel Dekker, New York, p. 213.
  • 4. Fessas D., Schiraldi A., Phase diagrams of arabinoxylan-water binaries. Thermochim. Acta, 2001, 370 83–89.
  • 5. Fessas D., Schiraldi A., Texture and staling of wheat bread crumb: effects of water extractable proteins and pentosans. Thermochim. Acta, 1998, 323, 17–26.
  • 6. Fessas D., Schiraldi A., Water properties in wheat fl our dough II: classical and Knudsen thermogravimetry approach. Food Chem., 2005, 90, 61–68.
  • 7. Grinberg V.Y, Tolstoguzov V.B., Thermodynamic incompatibility of proteins and polysaccharides in solutions. Food Hydrocoll., 1997, 11, 145–158.
  • 8. Kalichevsky M.T., Ring S.G., Incompatibility of amylose and amylopectin in aqueous solution. Carboh. Res., 1987, 162, 323–328.
  • 9. Maltini E., Torreggiani D., Venir E., Bertolo G., Water activity and the preservation of plant foods. Food Chem., 2003, 82, 79–86.
  • 10. Pani P., Schiraldi A., Signorelli M., Fessas D., Thermodynamic approach to osmo-dehydration. Food Biophys., 2010, 5, 177–185.
  • 11. Pitzer K.S., Thermodynamics of electrolytes. 1. Theoretical basis and general equation. J. Phys. Chem., 1973, 77, 268–277.
  • 12. Privalov P.L., Cold denaturation of proteins. CRC Crit. Rev Biochem. Mol. Biol., 1990, 25, 281–305.
  • 13. Privalov P.L., Gill S.J., The hydrophobic effect: a reappraisal. Pure Appl. Chem., 1989, 61, 1097–1104.
  • 14. Privalov P.L., Khechinashvili N.N., A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J. Mol. Biol., 1974, 86, 665–684.
  • 15. Roos H.Y., Phase Transitions in Foods. 1995, Acad. Press Inc. San Diego, California.
  • 16. Schiraldi A., Fessas D., Classical and Knudsen thermogravimetry to check states and displacements of water in food systems. J. Therm. Anal. Cal., 2003, 71, 225–235.
  • 17. Schiraldi A., Pezzati E., Thermodynamic approach to cold denaturation of proteins. Thermochim. Acta, 1992, 199, 105–114.
  • 18. Smith D.S., Mannheim C.H., Gilbert S.G., Water sorption isotherms of sucrose and glucose by inverse gas chromatography. J. Food Sci., 1981, 46, 1051–1053.
  • 19. Tolstoguzov V.B., Some thermodynamic considerations in food formulation. Food Hydrocoll., 2003, 17, 1–23.
  • 20. van Holde K.E., Johnson W.C., Shing Ho P., Principles of Physical Biochemistry. 1998, Prentice-Hall Inc. Publ. (Upper Saddle River, N.J.).
  • 21. Wark J.W., Mulford R.N.R., Kahn M., Study of some of the parameters affecting Knudsen effusion. II. A Monte Carlo computer analysis of parameters deduced from experiment. J. Chem. Phys., 1967, 47, 1718–1723.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7f55bc61-085d-4ed4-b15f-4392a479cff0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.