Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 6 |
Tytuł artykułu

Decontamination of 4-chloro-2-nitrophenol from aqueous solution by graphene adsorption: equilibrium, kinetic, and thermodynamic studies

Warianty tytułu
Języki publikacji
4-Chloro-2-nitrophenol (4C2NP) is an important chemical widely used in the pharmaceuticals, herbicide, and pesticide industries. The ability of graphene to remove 4C2NP from aqueous solutions was performed as a function of contact time, amounts of adsorbent, pH, initial 4C2NP concentrations, and temperatures using a batch technique. Based on the results, the amount of 4C2NP adsorption increased with increasing initial concentration, whereas the alkaline pH range, higher graphene dosage, and higher temperature were unfavorable. Non-linear regression methods suggest that the isotherm data can be well described by the Freundlich isotherm equation. The adsorption kinetic data were analyzed using the non-linear rate equations of pseudo-first and pseudo-second order. It was found that the pseudo-second-order kinetic model was the most appropriate model, describing the adsorption kinetics. The observed changes in the standard Gibbs free energy (ΔGº), standard enthalpy (ΔHº), and standard entropy (ΔSº) show that the adsorption of 4C2NP by graphene is feasible, spontaneous, and exothermic in the temperature range 298-328 K.
Słowa kluczowe
Opis fizyczny
  • Department of Chemistry, College of Sciences, East Azarbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran
  • Department of Chemistry, College of Sciences, Ahar Branch, Islamic Azad University, Ahar, Iran
  • 1. DURSUN A. Y., TEPE O. Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha. J. Hazard. Mater. 126, (1-3), 105, 2005.
  • 2. SINGH K. P., MALIK A., SINHA S., OJHA P. Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material. J. Hazard. Mater. 150, (3), 626, 2008.
  • 3. SRIVASTAVA V. C., SWAMY M. M., MALL I. D., PRASAD B., MISHRA I. M. Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloid. Surface. 272, (1), 89, 2006.
  • 4. CALACE N., NARDI E., PETRONIO B. M., PIETRO- LETTI M. Adsorption of phenols by paper mill sludge. Environ. Pollut. 118, (3), 315, 2002.
  • 5. FARROKHI M., MESDAGHINIA A., YAZDANBAKHSH A. R., NASSERI S. Characteristics of Fenton's oxidation of 2, 4, 6 trichlorophenol. Iran J. Environ. Healh Sci. Eng. 1, (1), 12, 2004.
  • 6. SARITHA P., APARANA C., HIMABINDU V., ANJANEYULU Y. Advanced oxidation of 4-chloro-2-nitro- phenol (4C-2-NP)- A comparative study. J. Hazard. Mater. 149, (3), 609, 2007.
  • 7. MOUSSAVI G., MAHMOUDI M., BARIKBIN B. Biological removal of phenol from strong wastewaters using a novel MSBR. Water Res. 43, (5), 1295, 2009.
  • 8. AGARRY S. E., SOLOMON B. O. Kinetics of batch micro­bial degradation of phenols by indigenous Pseudomonas flu­orescence. Int. J. Environ. Sci. Tech. 5, (2), 223, 2008.
  • 9. BENITEZ F. J., BELTRAN-HEREDIA J., ACERO J. L., RUBIO F. J. Rate constants for the reactions of ozone with chlorophenols in aqueous solutions. J. Hazard. Mater. B 79, (3), 271, 2000.
  • 10. GHARBANI P., KHOSRAVI M., TABATABAII S. M., ZARE K., DASTMALCHI S., MEHRIZAD A. Degradation of trace aqueous 4-chloro-2-nitrophenol occurring in phar­maceutical industrial wastewater by ozone. Int. J. Environ. Sci. Tech. 7, (2), 377, 2010.
  • 11. HASHIZUME H. Adsorption of some aromatic compounds by a synthetic mesoporous silicate. J. Environ. Sci. Heal. A 39, (10), 615, 2004.
  • 12. ROOSTAEI N., TEZEL F. H. Removal of phenol from aqueous solutions by adsorption. J. Environ. Manage. 70, (2), 157, 2004.
  • 13. BIERNAT J. F., MAKUCH B. Sorbents for Preconcentration of Phenols from Polluted Waters. Supramolecular Assistance. Pol. J. Environ. Stud. 9, (2), 71, 2000.
  • 14. GHOLIZADEH A., KERMANI M., GHOLAMI M., FARZADKIA M. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic com­pounds from aqueous solutions: comparative study. J. Environ. Healh Sci. Eng. 11, (29), 1, 2013.
  • 15. BANTA F. A., AL-BASHIR B., AL-ASHEH S., HAYA- JNEH O. Adsorption of phenol by Bentonite. Environ. Pollut. 107, (3), 391, 2000.
  • 16. MUBARIK S., SAEED A., MEHMOOD Z., IQBAL M. Phenol adsorption by charred sawdust of sheesham (Indian rosewood; Dalbergiasissoo) from single, binary and ternary contaminated solutions. J. Taiwan Inst. Chem. Eng. 43, (6), 926, 2012.
  • 17. KUMAR S., ZAFAR M., PRAJAPATI J. K., KUMAR S., KANNEPALLI S. Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution. J. Hazard. Mater. 185, (1), 287, 2011.
  • 18. MEHRIZAD A., ZARE K., AGHAIE H., DASTMALCHI S. Removal of 4-chloro-2-nitrophenol occurring in drug and pesticide waste by adsorption onto nano-titanium dioxide. Int. J. Environ. Sci. Tech. 9, (2), 355, 2012.
  • 19. MEHRIZAD A., AGHAIE M., GHARBANI P., DAST­MALCHI S., MONAJJEMI M., ZARE K. Comparison of 4- chloro-2-nitrophenol adsorption on single-walled and multi- walled carbon nanotubes. Iranian J. Environ. Health Sci. Eng. 9, (5), 1, 2012.
  • 20. GEIM A. K., NOVOSELOV K. S. The rise of graphene. Nature Materials 6, 183, 2007.
  • 21. ZHAO G., LI J., WANG X. Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sul­fonated graphene nanosheets. Chem. Eng. J. 173, (1), 185, 2011.
  • 22. CHANG Y. P., REN C. L., QU J. C., CHEN X. G. Preparation and characterization of Fe3O4/graphene nanocomposite and Investigation of its adsorption perfor­mance for aniline and p-chloroaniline. Appl. Surf. Sci. 261, (15), 504, 2012.
  • 23. DENG X. J., LU L. L., LI H. W., LUO F. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J. Hazard. Mater. 183, (1­3), 923, 2010.
  • 24. ZHU J., WEI S., GU H., RAPOLE S. B., WANG Q., LUO Z., HALDOLAARACHCHIGE N., YOUNG D. P., GUO Z. One-pot synthesis of magnetic graphene nanocomposites dec­orated with core@double-shell nanoparticles for fast chromi­um removal. Environ. Sci. Technol. 46, (2), 977, 2012.
  • 25. CAI X., TAN S., LIN M., XIE A., MAI W., ZHANG X., LIN Z., WU T., LIU Y. Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific tar­geting capability. Langmuir 27, (12), 7828, 2011.
  • 26. GONEN F., SERIN S. Adsorption study on orange peel: Removal of Ni(II) ions from aqueous solution. Afr. J. Biotechnol. 11, (5), 1250, 2012.
  • 27. WU S., ZHAO X., LI Y., DU Q., SUN J., WANG Y., WANG X., XIA Y., WANG Z., XIA L. Adsorption Properties of Doxorubicin Hydrochloride onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies. Materials 6, (5), 2026, 2013.
  • 28. ELLIOTT H. A., HUANG C. P. The Adsorption of Cu(II) Complexes onto Aluminosilicates. Water Res. 15, (7), 849, 1981.
  • 29. LI Y., DU Q., LIU T., SUN J., JIAO Y., XIA Y., XIA L., WANG Z., ZHANG W., WANG K., ZHU H., WU D. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater. Res. Bull. 47, (8), 1898, 2012.
  • 30. SHAHRYARI Z., SOLTANI G. A., AZADI M. Experimental study of methylene blue adsorption from aqueous solutions onto carbon nano tubes. Int. J. Water Res. Environ. Eng. 2, (2), 16, 2010.
  • 31. MORADI O., AGHAIE M., ZARE K., MONAJJEMI M., AGHAIE H. The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution. J. Hazard. Mater. 170, (2-3), 673, 2009.
  • 32. LANGMUIR I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, (11), 2221, 1916.
  • 33. FREUNDLICH H. M. F. Uber die adsorption in losungen. Z. Phys. Chem. 57, (A), 385, 1906.
  • 34. TEMKIN M., PYZHEV V. Kinetics of the Synthesis of Ammonia on Promoted Iron Catalysts. J. Phys. Chem. 13, 851, 1940.
  • 35. BEHNAJADY M. A., BIMEGHDAR S. Synthesis of meso- porous NiO nanoparticles and their application in the adsorption of Cr (VI). Chem. Eng. J. 239, 105, 2014.
  • 36. ALLEN S. J., GAN Q., MATTHEWS R., JOHNSON P. A. Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresource Technol. 88, (2), 143, 2003.
  • 37. WU C. H. Adsorption of reactive dye onto carbon nan- otubes: equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 144, (1-2), 93, 2007.
  • 38. LAGERGREN S. Y. Zur theorie der sogenannten adsorption geloster stoffe. K. Seven. Vetenskapsakad. Handl. 24, (4), 1, 1898.
  • 39. HO Y. S., MCKAY G. Pseudo-second order model for sorp­tion processes. Process Biochem. 34, 451, 1999.
  • 40. XU J., WANG L., ZHU Y. Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption. Langmuir 28, 8418, 2012.
  • 41. MORADI O., ZARE K., MONAJJEMI M., YARI M., AGHAIE H. The Studies of Equilibrium and Thermodynamic Adsorption of Pb(II), Cd(II) and Cu(II) Ions from Aqueous Solution onto SWCNTs and SWCNT-COOH Surfaces. Fuller. Nanotub. Car. N. 18, 285, 2010.
rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.