PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Assessing nutrient elements as indicators for soil active organic carbon in topsoil of karst areas

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In karst areas, in order to ascertain the relationship between soil active organic carbon fractions and soil nutrient elements, topsoil samples (the sampling points were set at 80-m intervals) were collected for the analysis of soil physicochemical properties. In the sampling area, land use was divided into upland, paddy, and shrub land. The results showed that dissolved organic C (DOC) and microbial biomass C (MBC) contents in shrub land soil were higher than those values in upland and paddy soils (p<0.05). The total nitrogen (TN) content in paddy was lower than in upland and shrub land (p<0.05). The mean value of total phosphorus (TP) in upland and shrub land was approximately 1.5 times higher than that in paddy. Available nitrogen (AN) in shrub land soil was higher than in upland, whereas Olsen-P was lowest in shrub land in all soils (p<0.05). The C:P and N:P ratios in upland and paddy were lower than in shrub land (p<0.05). At plot scale, random forest analysis revealed that pH and soil organic carbon (SOC) were the most important variables determining DOC content in croplands (upland and paddy) and shrub land, respectively. The accumulation of SOC accelerates the growth of microbial biomass in upland. In shrub land, increases in SOC and total nitrogen were in favor of microbial growth. At the small-watershed scale, C:P and N:P ratios had a significant and positive effect on the content of DOC and MBC, respectively. The results implied that high C and N availability, especially in combination with low P availability, is helpful for increasing soil microbial biomass.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1325-1333,fig.,ref.

Twórcy

autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
  • Huanjiang Observation and Research Station for Karst Eco-Systems, Chinese Academy of Sciences, Huanjiang, China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
  • Huanjiang Observation and Research Station for Karst Eco-Systems, Chinese Academy of Sciences, Huanjiang, China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
  • Huanjiang Observation and Research Station for Karst Eco-Systems, Chinese Academy of Sciences, Huanjiang, China

Bibliografia

  • 1. GAO Y., YU G.R., HE N.P. Equilibration of the terrestrial water, nitrogen, and carbon cycles: advocating a health threshold for carbon storage. Ecol. Eng. 57, 366, 2013.
  • 2. LI Y., WU J.S., LIU S.L., SHEN J.L., HUANG D.Y., SU Y.R., WEI W.X., SYERS J.K. Is the C: N: P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? Global Biogeochem. Cy. 26 (4), 1, 2012.
  • 3. LI X., WANF H., GAN S.H., JIANG D.Q., TIAN G.M., ZHANG Z.J. Eco-stoichiometric alterations in paddy soil ecosystem driven by phosphorus application. PLoS One. 8, e61141, 2013.
  • 4. KIRKBY C.A., RICHARDSON A.E., WADE L.J., BATTEN G.D., BLANCHARD C., KIRKEGAARD J.A. Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biol. Biochem. 60, 77, 2013.
  • 5. NOSRATI K., GOVERS G., SMOLDERS E. Dissolved organic carbon concentrations and fluxes correlate with land use and catchment characteristics in a semi-arid drainage basin of Iran. Catena. 95, 177, 2012.
  • 6. VAN DEN BERG L.J.L., LAURA S., ASHMORE M.R. Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality. Sci. Total Environ. 427-428, 269, 2012.
  • 7. ZHANG J.B., SONG C.C., YANG W.Y. Land use effects on the distribution of labile organic carbon fractions through soil profiles. Soil Sci. Soc. Am. J. 70 (2), 660, 2006.
  • 8. HARTMAN W.H., RICHARDSON C.J. Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes? PLoS ONE. 8 (3), e57127, 2013.
  • 9. SCHIMEL J.P., WEINTRAUB M.N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem. 35 (4), 549, 2003.
  • 10. SINSABAUGH R.L., HILL B.H., FOLLSTAD SHAH J.J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature. 462, 795, 2009.
  • 11. ARNALDS A. Carbon sequestration and the restoration of land health. Climatic Change. 65 (3), 333, 2004.
  • 12. PENG T., WANG S.J. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena. 90, 53, 2012.
  • 13. YANG X.Q., HU B.Q. Quality characteristics of soils in karst rocky-desertified areas with ecosystem under restoration succession - a case study of Chengjiang subwatershed, Duan county, Guangxi. Journal of Ecology and Rural Environment. 25 (3), 1, 2009 [In Chinese].
  • 14. ZHANG W., CHEN H.S., WANG K.L., SU Y.R., ZHANG J.G., YI A.J. The heterogeneity and its influencing factors of soil nutrients in preak- cluster depression areas of karst region. Agr. Sci. China. 6 (3), 322, 2007.
  • 15. LU X.Q., TODA H., DING F.J., FANF S.Z., YANG W.X., XU H.G. Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. Eur. J. Soil Biol. 61, 49, 2014.
  • 16. PEÑUELAS J., POULTER B., SARDANS J., CIAIS P., VAN DER VELDE M., BOPP L., BOUCHER O., GODDERIS Y., HINSINGER P, LLUSIÀ J., NARDIN E., VICCA S., Obersteiner M., JANSSENS I.A. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2064, 2013.
  • 17. NELSON D.W., SOMMERS L.E. Total carbon, organic carbon and organic matter, in: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of soil analysis, part 2, chemical and microbiologiacl properties, 2nd edn. American Society of Agronomy, Inc., Madison, 539, 1982.
  • 18. BREMNER J.M., Nitrogen-total, in: D.L. Sparks (Eds.), Methods of soil analysis: chemical methods, part 3, Soil Science Society of America, Inc., Madison, 1085, 1996.
  • 19. BAO S.D. Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing, China, 46, 2000 [In Chinese].
  • 20. CAMBARDELLA C.A., MOORMAN T.B., PARKIN T.B., KARLEN D.L., NOVAK J.M., TURCO R.F., KONOPKA A.E. Field-scale variability of soil properties in central iowa soils. Soil Sci. Soc. Am. J. 58 (5), 1501, 1994.
  • 21. PIERZYNSKI G.M. Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters. North Carolina State University, Raleigh, 2000.
  • 22. WU J.S., JOERGENSEN R.G., POMMERENING B., CHAUSSOD R., BROOKES P.C. Measurement of soil microbial biomass C by fumigation- extraction- an automated procedure. Soil Biol. Biochem. 22 (8), 1167, 1990.
  • 23. DELGADO-BAQUERIZO M., GALLARDO A., COVELO F., PRADO-COMESAÑNA A., OVHOA V., MAESTRE F.T. Differences in thallus chemistry are related to species-specific effects of biocrust-forming lichens on soil nutrients and microbial communities. Funct. Ecol. 29 (8), 1087, 2015.
  • 24. ZHU H.H., WU J.S., GUO S.L., HUANG D.Y., ZHU Q.H., GE T.D. LEI T.W. Land use and topographic position control soil organic C and N accumulation in eroded hilly watershed of the Loess Plateau. Catena. 120, 64, 2014.
  • 25. FERNÁNDEZ-ROMERO M.L., LOZANO-GARCÍA B., PARRAS-ALCANTARA L. Topography and land use change effects on the soil organic carbon stock of forest soils in Mediterranean natural areas. Agr. Ecosyst. Environ. 195, 1, 2014.
  • 26. WANG J., FU B., QIU Y., CHEN L. Soil nutrients in relation to land use and landscape position in the semiarid small catchment on the loess plateau in China. J. Arid Environ. 48 (4), 537, 2001.
  • 27. LIU S.L., DONG Y.H., CHENG F.Y., YIN Y.J., ZHANG Y.Q. Variation of soil organic carbon and land use in a dry valley in Sichuan province, Southwestern China. Ecol. Eng. 95, 501, 2016.
  • 28. CHAPLOT V., ABDALLA K., ALEXIS M., BOURENNANE H., DARBOUX F., DLAMINI P., EVERSON C., MCHUNU C., MULLER-NEDEBOCK D., MUTEMA M., QUENEA K., THENGA H., CHIVENGE P. Surface organic carbon enrichment to explain greater CO2 emissions from short-term no-tilled soils. Agr. Ecosyst. Environ. 203 (1), 110, 2015.
  • 29. ZHANG G.S., NI Z.W. Winter tillage impacts on soil organic carbon, aggregation and CO2 emission in a rainfed vegetable cropping system of the mid-Yunnan plateau, China. Soil Till. Res. 165, 294, 2017.
  • 30. OELMANN Y., BUCHMANN N., GLEIXNER G., HABEKOST M., ROSCHER C., ROSENKRANZ S., SCHULZE E.D., STEINBEISS S., TEMPERTON V.M., WEIGELT A., WEISSER W.W., WILCKE W. Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first five years after establishment. Global Biogeochem. Cy. 25, GB2014, 2011.
  • 31. PRIETZEL J., BACHMANN S. Changes in soil organic C and N stocks after forest transformation from Norway spruce and Scots pine into Douglas fir, Douglas fir/spruce, or European beech stands at different sites in Southern Germany. Forest Ecol. Manag. 269, 134, 2012.
  • 32. HUANG W.J., ZHOU G.Y., LIU J.X. Nitrogen and phosphorus status and their influence on aboveground production under increasing nitrogen deposition in three successional forests. Acta Oecol. 44 (SI), 20, 2012.
  • 33. SOWERBY A., EMMETT B.A., WILLIAMS D., BEIER C., EVANS C.D. The response of dissolved organic carbon (DOC) and the ecosystem carbon balance to experimental drought in a temperate shrubland. Eur. J. Soil Sci. 61 (5), 697, 2010.
  • 34. SEEDRE M., SHRESTHA B.M., CHEN H.Y.H., COLUMBO S., JÕGISTE K. Carbon dynamics of North American boreal forest after stand replacing wildfire and clearcut logging. J. Forest Res. 16 (3), 168, 2011.
  • 35. KEMMITT S.J., WRIGHT D., KWT G., JONES D.L. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 38 (5), 898, 2006.
  • 36. WAREMBOURG F.R., ROUMET C., LAFONT F. Differences in rhizosphere carbon partitioning among plant species of different families. Plant Soil. 256 (2), 347, 2003.
  • 37. SARDANS J., RIVAS-UBACH A., PEÑUELAS J. The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspect. Plant Ecolo. 14, 33, 2012.
  • 38. GAO Y., ZHU B., ZHOU P., TANG J.L., WANG T., MIAO C.Y. Effects of vegetation cover on phosphorus loss from a hillslope cropland of purple soil under simulated rainfall: a case study in China. Nutr. Cycl. Agroecosys. 85 (3), 263, 2009.
  • 39. KALBITZ K., SOLINGER S., PARK J.H., MICHALZIK B., MATZNER E. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci. 165 (4), 277, 2000.
  • 40. HU N., LI H., TANG Z., LI Z.F., LI G.C., JIANG Y., HU X.M., LOU Y.L. Community size, activity and C:N stoichiometry of soil microorganisms following reforestation in a Karst region. Eur. J. Soil Biol. 73, 77, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7f4050e3-f709-48f3-9694-0aa152d86474
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.