Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 71 | 1 |
Tytuł artykułu

Influence of low oxygen tensions on expression of pluripotency genes in stem cells

Treść / Zawartość
Warianty tytułu
Języki publikacji
The stem cells are characterized by self-renewal ability and potential to differentiate into other cell types of the body. They are residuing in defined microenvironments - "stem cell niches". The embryonic stem cells (ESC) are derived from embryos which exist in 3-5 % oxygen condition. This environment is physiologically normal not only for ES cells but also for many other types of stem cells including neural stem cells (NSC). These observations suggest that low oxygen condition plays a very important role in the maintenance of cell stemness. Pluripotency is regulated by the family of hypoxia inducible factors (HIFs), which are dependent on oxygen tensions. HIF-2a is an upstream regulator of Oct4, which is one of the main transcription factors used to generate the first induced pluripotent stem cells (iPSCs). It has been shown that knock-down of HIF-2a but not HIF-1a, leads to a decrease in the expression of Oct4, Nanog and Sox2, which are important stem cells markers. The structure of hypoxia inducible factors as well as their behavior in hypoxia and normoxia was described. Therefore optimization of oxygen concentration seems to be crucial from the stem cell transplantation as well as iPS transplantation standpoint. Although many experiments with cell culture under low oxygen condition were performed, there is still much that is unknown. This short review presents some aspects on important issue of hypoxia induced regulation of stemness.
Słowa kluczowe
Opis fizyczny
  • Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, Warsaw, Poland
  • Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, Warsaw, Poland
  • Oncology Institute, Warsaw, Poland
  • Medical Research Centre, NeuroRepair Department, Polish Academy of Sciences, Warsaw, Poland
  • Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6: 635-645.
  • Ali H, Bahbahani H (2010) Umbilical cord blood stem cells­potential therapeutic tool for neural injuries and disorder. Acta Neurobiol Exp (Wars) 70: 316-324.
  • Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22: 629-634.
  • Bardos JI, Ashcroft M (2005) Negative and positive regula­tion of HIF-1: a complex network. Biochim Biophys Acta 1755: 107-120.
  • Berra EA, Ginouves A, Pouyssegur J (2006) The hypoxia- inducible-factor hydroxylases bring fresh air into hypoxia signalling. EMBO Rep 7: 41-45.
  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122: 947-956.
  • Brahimi-Horn MC, Pouyssegur J (2009) HIF at a glance. J. Cell Sci 122: 1055-1057.
  • Busettil RA, Rubio M, Dolle MET, Campisi J, Vijg J (2003) Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell 2: 287-294.
  • Buzanska L, Ruiz A, Zychowicz M, Rauscher H, Ceriotti L, Rossi F, Colpo P, Domanska-Janik K, Coecke S (2009) Patterned growth and differentiation of Human Cord Blood- derived Neural Stem Cells on nano-engineered and bio-func- tionized surfaces. Acta Neurobiol Exp (Wars) 69: 24-36
  • Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC, Keith B (2006) HIF-2 regu­lates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20: 557-570.
  • Dery MAC, Michaud MD, Richard DE (2005) Hypoxia- inducible factor 1: regulation by hypoxic and non-hypox- ic activators Intl. J Biochem Cell Biol 37: 535-540.
  • Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujiikuriyama Y. (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1-a regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94: 4273-4278.
  • Fandrey J, Gorr TA, Gassmann M (2006) Regulating cellu­lar oxygen sensing by hydroxylation. Cardiovasc Res 71: 642-651.
  • Forristal CE, Wright KL, Hanley NA, Oreffo RO, Houghton FD (2010) Hypoxia inducible factors regulate pluripo- tency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139: 85-97.
  • Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabo­lism and proliferation. Cancer Cell 12: 108-113.
  • Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Developmental Cell 9: 617-628.
  • Hammond EM, Giaccia A J (2006) Hypoxia-inducible fac- tor-1 and p53: friends, acquaintances, or strangers? Clin Cancer Res 12: 5007-5009.
  • Hewitson KS, McNeill LA, Elkins JM, Schofield CJ (2003) The role of iron and 2-oxoglutarate oxygenases in signaling. Biochemical Society Transactions 31: 510-515.
  • Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1a (HIF- 1a) and HIF-2a in hypoxic gene regulation. Mol Cell Biol 23: 9361-9374.
  • Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-pro- teasome pathway. Proc Natl Acad Sci USA 95: 7987­7992.
  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr. (2001) HIFa tar­geted for VHL-mediated destruction by proline hydroxyla- tion: implications for O2 sensing. Science 292: 464-468.
  • Ivanovic Z (2009) Hypoxia or in situ normoxia: the stem cell paradigm. J Cell Physiol 219: 271-275.
  • Jablonska A, Kozlowska H, Markiewicz I, Domanska-Janik K, Lukomska B (2010) Transplantation of neural stem cells derived from human cord blood to the brain of adult and neonatal rats. Acta Neurobiol Exp (Wars) 70: 337­350.
  • Kallio PJ, Wilson WJ, O'Brien S, Makino Y, Poellinger L (1999) Regulation of the hypoxia- inducible transcription factor lot by the ubiquitin-proteasome pathway. J Biol Chem 274: 6519-6525.
  • Kenneth NS, Rocha S (2008) Regulation of gene expression by hypoxia. Biochem J 414: 19-29.
  • Kim JW, Gao P, Liu YC, Semenza GL, Dang CV (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehy­drogenase kinase 1. Mol Cell Biol 27: 7381-7393.
  • Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE (2004) HIF-1a induces cell cycle arrest by func­tionally counteracting Myc. EMBO J 23: 1949-1956.
  • Kozlowska H, Jablonka J, Janowski M, Jurga M, Kossut M, Domanska-Janik K (2007) Transplantation of a novel human cord blood-derived neural stem-like cell line in rat model of cortical infarct. Stem Cell and Dev 16: 481-488.
  • Lando D, Peet DJ, Gorman JI, Whelan DA, Whitelaw ML, Bruick RK (2002a) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia- inducible factor. Genes Dev 16: 1466-1471.
  • Lando D, Peet DJ, Whitelaw ML, Gorman JI, Whelan DA (2002b) Asparagine hydroxylation of the HIF transactiva- tion domain a hypoxic switch. Science 295: 858-861.
  • Maxwell PH (2005) Hypoxia-inducible factor as a physio­logical regulator. Exp Physiol 90: 791-797.
  • Mastrogiannaki M, Matak P, KeithB, Simon MC, Vaulont S, Peyssonnaux C (2009) HIF-2a, but not HIF-1a, promotes iron absorption in mice J Clin Invest 119: 1159-1166.
  • Maynard MA, Evans AJ, Hosomi T, Hara S, Jewett MAS, Ohh M (2005) Human HIF-3a4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. The FASEB Journal 19: 1396-1406
  • Michiels C, Minet E, Michel G, Mottet D, Piret JP, Raes M (2001) HIF-1 and AP-1 cooperate to increase gene expression in hypoxia: role of MAP kinases. IUBMB Life 52: 49-53.
  • Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell 7: 150-161.
  • Patel SA and Simon MC (2008) Biology of Hypoxia- Inducible Factor-2a in Development and Disease. Cell Death Differ. 15: 628-634.
  • Perkins ND, Gilmore TD (2006) Good cop, bad cop: the dif­ferent faces of NF-kB. Cell Death Differ 13: 759-772.
  • Semenza GL, Shimoda LA, Prabhakar NR (2005) Signaling pathways in acute oxygen sensing. Wiley, Chichester (Novartis Foundation Symposium 272) p. 2-14.
  • Studer L, Csete M, Lee S-H, Kabbani N, Walikonis J, Wold B, McKay R (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in low­ered oxygen. J Neurosci 20: 7377-7383.
  • Szymczak P, Wójcik - Stanaszek L, Sypecka J, Sokołowska A, Zalewska T (2010) Effect of matrix metalloprpteinases inhibitions on the proliferation and differentiation of HUCB-NSC cultured in the presence of adhesive sub­strat. Acta Neurobiol Exp (Wars) 70: 325-336.
  • Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11: 72-82.
  • Takahashi K and Yamanaka S (2006) Induction of pluri­potent stem cells from mouse embryonic and adult fibroblast cultures by defined factors cell 126: 663­676.
  • Tuckerman JR, Zhao Y, Hewitson KS, Tian YM, Pugh CW, Ratcliffe PJ, Mole DR (2004) Determination and com­parison of specific activity of the HIF-prolyl hydroxy­lases. FEBS Lett 576: 145-150.
  • Van Uden P, Kenneth NS, Rocha S (2008) Regulation of hypoxia inducible factor-1alpha by NF-kappaB. Biochem J 412: 477-484.
  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia- inducible factor 1 is a basic helix-loop-helix-PAS het- erodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92: 5510-5514.
  • Wang GL and Semenza GL (1995) Purification and charac­terization of hypoxia-inducible factor 1. J Biol Chem 270: 1230-1237.
  • Wood SM, Gleadle JM, Pugh CW, Hankinson O, Ratcliffe PJ (1996) The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J Biol Chem 271: 15117-15123.
  • Wu W, Chen X, Hu C, Li J, Yu Z, Cai W (2010) Transplantation of neural stem cells expressing hypoxia-inducible factor- 1alpha (HIF-1alpha) improves behavioral recovery in a rat stroke model. J Clin Neurosci 17: 92-95.
  • Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009) Hypoxia enhances the generation of induced pluri­potent stem cells. Cell Stem Cell 5: 237-241.
  • Yu H, Cao B, Feng M, Zhou Q, Sun X, Wu S, Jin S, Liu H, Lianhong J (2010) Combinated transplantation of neural stem cells and collagen type I promote functional recov­ery after cerebral ischemia in rats. Anat Rec (Hoboken) 293: 911-917.
  • Zadori A, Agoston VA, Demeter K, Hadinger N, Varady L, Kohidi T, Gobl A, Nagy Z, Madarasz E (2011) Survival and differentiation of neuroectodermal cells with stem cell properities at diffrent oxygen levels. Exp Neurology 227: 136-148.
  • Zagorska A and Dulak J (2004) HIF-1: the knowns and unknowns of hypoxia sensing. Acta Biochim Polon 51: 563-585.
  • Zhang CP, Zhu LL, Zhao T, Zhao H, Huang X, Ma X, Wang H, Fan M (2007) Characteristics of neural stem cells expanded in lowered oxygen and the potential role of hypoxia-inducible factor-1Alpha. Neurosignals 15: 259­265.
  • Zhang J, Li L (2008) Stem cell niche: microenvironment and beyond. J Biol Chem 283: 9499-9503.
  • Zhang Z, Jin D, Yang Z, Shen B, Liu M (2011) Effects of 17ß-estradiol pre-treated adult neural stem cells on neu­ronal differentiation and neurological recovery in rats with cerebral ischemia. Brain Inj 25: 227-236.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.