PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 4 |

Tytuł artykułu

Reactive oxygen species production and antioxidative defense in pea (Pisum sativum L.) root nodules after short-term aluminium treatment

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Pea plants (Pisum sativum L.) were treated with 50 µM aluminum chloride at pH 4.5 for 2 or 24 h at room temperature. Following treatment, root nodule Al uptake, the generation of reactive oxygen species (ROS, O₂⁻ and H₂O₂), and the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) were investigated. Aluminum accumulation was found chiefly in the apoplast of the nodule cortex, endodermis and meristem, while the formation of peroxide was detected in the nodule cortex, infection threads and bacteroidal tissue. Further, there were increased levels of superoxide in the meristem and bacteroidal tissue. The activity of SOD (EC 1.15.1.1) and POX (EC 1.11.1.7) increased in the Al-treated nodules and the roots of pea plants, whereas CAT (EC 1.11.1.6) activity decreased. The Al absorbed by the nodules induced ROS production. The POX and SOD are important ROS-scavengers in Al-stressed nodules.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

4

Opis fizyczny

p.1387-1400,fig.,ref.

Twórcy

  • Department of Botany, University of Life Science, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • Ahn SJ, Sivaguru M, Chung GC, Rengel Z, Matsumoto H (2002) Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo). J Exp Bot 53:1959–1966
  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341. doi:10.1093/jexbot/53.372.1331
  • Alva AK, Assher CJ, Edwards DG (1990) Effect of solution pH, external calcium concentration and aluminum activity on nodulation and early growth of cowpea. Aust J Agric Res 41:359–365. doi:10.1071/AR9900359
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701
  • Balestrasse KB, Gallego SM, Tomaro ML (2006) Aluminium stress affects nitrogen fixation and assimilation in soybean (Glycine max L.). Plant Growth Regul 48:271–281. doi:10.1007/s10725-006-0010-x
  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminum-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminum. Plant Cell Environ 24:1269–1278. doi:10.1046/j.0016-8025.2001.00783.x
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8
  • Becana M, Salin ML (1989) Superoxide dismutases in nodules of leguminous plants. Can J Bot 67:415–421. doi:10.1139/b89-057
  • Becana M, Paris FJ, Sandalio LM, del Río LA (1989) Isoenzymes of superoxide dismutase in nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L.). Plant Physiol 90:1286–1292
  • Becana M, Dalton DA, Morana JF, Iturbe-Ormaetxea I, Matamorosa MA, Rubioa MC (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381. doi:10.1034/j.1399-3054.2000.100402.x
  • Blancaflor EB, Jones DL, Gilroy S (1998) Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in the primary roots of maize. Plant Physiol 118:159–172
  • Bordeleau LM, Provost D (1994) Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115–125. doi:10.1034/j.1399-3054.2000.100402.x
  • Borucki W, Sujkowska M (2008) The effects of sodium chloridesalinity upon growth, nodulation, and root nodule structure of pea (Pisum sativum L.) plants. Acta Physiol Plant 30:293–301. doi:10.1007/s11738-007-0120-8
  • Boscolo PRS, Menossi M, Jorge RA (2003) Aluminum induced oxidative stress in maize. Phytochemistry 62:181–189. doi:10.1016/S0031-9422(02)00491-0
  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Browne BA, Driscoll CT, McColl JG (1990) Aluminum speciation using morin. II. Principles and procedures. J Environ Qual 19:73–82
  • Bueno P, Varela J, Gimenez GG, Del Rio LA (1995) Peroxisomal copper, zinc superoxide dismutase: characterization of the isoenzyme from watermelon cotyledons. Plant Physiol 108:1151–1160
  • Cakmak I, Horst WJ (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x
  • Chandran D, Sharopova N, Ivashuta S, Gnatt JS, Vandenbosch KA, Samac DA (2008) Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta 228:151–16683. doi:10.1007/s00425-008-0726-0
  • Churin Y, Schilling S, B}orner T (1999) A gene family encoding glutathione peroxidase homologues in Hordeum vulgare (barley). FEBS Lett 459:33–38. doi:10.1016/S0014-5793(99) 01208-9
  • Čiamporová M(2000)Diverse response of root cell structure to aluminum stress. Plant Soil 226:113–116. doi:10.10213/A:102646803157
  • Dalton DA, Baird LM, Langeberg L, Taugher CY, Anyan WR, Vance CP, Sarath G (1993) Subcellular localization of oxygen defense enzymes in soybean (Glycine max [L.] Merr.) root nodules. Plant Physiol 102:481–489. doi:10.1104/pp.102.2.481
  • Darko E, Ambrus H, Stefanovits-Banyai E, Fodor J, Bakos F (2004) Aluminum toxicity, Al tolerance and oxidative stress in an Alsensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci 166:583–591. doi: 10.1016/j.plantsci.2003.10.023
  • de Lima ML, Copeland L (1994) Changes in the ultrastructure of the root tip of wheat following exposure to aluminum. Aust J Plant Physiol 21:85–94
  • Delisle G, Champoux M, Houde M (2001) Characterization of oxalate oxidase and cell death in Al-sensitive and tolerant wheat roots. Plant Cell Physiol 42:324–333
  • Doncheva S, Amenos M, Poschenrieder C, Barcelo J (2005) Root cell patterning: a primary target for aluminum toxicity in maize. J Exp Bot 56:1213–1220. doi:10.1093/jxb/eri115
  • Ezaki B, Yamamoto Y, Matsumoto H (1996) Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: possible involvement of peroxidase isozymes in aluminum ion stress. Physiol Plant 96:21–28. doi: 10.1111/j.1399-3054.1996.tb00178.x
  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–665. doi:10.1104/pp.122.3.657
  • Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127:918–927. doi: 10.1104/pp.010399
  • Fahraeus G (1957) The infection of clover root hairs by nodule bacteria studied by single glass slide technique. J Gen Microbiol 16:374–381
  • Ferreira RR, Fornazier RF, Vitoria AP, Lea PJ, Azevedo RA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr 25:327–342. doi:10.1081/PLN-100108839
  • Flis SE, Glenn AR, Dilworth MJ (1993) The interaction between aluminium and root nodule bacteria. Soil Biol Biochem 25:403–417
  • Foyer CH, Descouvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ 17:507–523. doi:10.1111/j.1365-3040.1994.tb00146.x
  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR, Smirnoff N (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254. doi:10.1093/jexbot/53.372.1249
  • Hegedüs A, Erdei S, Horváth G (2001) Comparative studies of H₂O₂ detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093. doi:10.1016/S0168-9452(01)00330-2
  • Hérouart D, Baudouin E, Fredo P, Harrison J, Santos R, Jamet A, Van de Sype G, Touati D, Puppo A (2002) Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume–Rhizobium symbiosis? Plant Physiol Biochem 40:619–624. doi:10.1016/S0981-9428(02)01415-8
  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468. doi:10.1093/pcp/pce061
  • Horst WJ, Schmohl N, Kollmeier M, Baluška F, Sivaguru M (1999) Does aluminum affect root growth of maize through interaction with the cell wall–plasma membrane–cytoskeleton continuum?Plant Soil 215:163–174
  • Hossain AKMZ, Koyama H, Hara T (2006) Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. J Plant Physiol 163:39–47
  • Igual JM, Rodriguezbarrueco C, Cervantes E (1997) The effect of aluminum on nodulation and nitrogen fixation in Casuarina cunninghamiana Miq. Plant Soil 190:41–46. doi:10.1023/A:1004259123008
  • Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Dalton DA, Becana M (2001) The antioxidants of legume nodule mitochondria. Mol Plant-Microbe Interact 14:1189–1196. doi:10.1094/MPMI.2001. 14.10.1189
  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ine‘s J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436. doi:10.1007/s11738-009-0275-6
  • James A, Siguard S, Van de Sype G, Puppo A, Hèrouart D (2003) Expression of the bacterial catalase genes in Sinorhizobium meliloti–Medicago sativa symbiosis and their crucial role during the infection process. Mol Plant-Microbe Interact 16:217–225
  • Jebara S, Jebara M, Limam F, Aouani ME (2005) Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities under salt stress. J Plant Physiol 162:929–936. doi:10.1016/j.jplph.2004.10.005
  • Jones DL, Blancaor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminum uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ 29:1309–1318. doi:10.1111/j.1365-3040.2006.01509.x
  • Kaneko Y, Newcomb EH (1987) Cytochemical localization of uricase and catalase in developing root nodules of soybean. Protoplasma 140:1–12. doi:10.1007/BF01273250
  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A–138A
  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260. doi:10.1146/annurev.pp.46.060195.001321
  • Konarska A (2005) Changes in the development and structure of Raphanus sativus L. var. radicula Pers. root under aluminum stress conditions. Acta Sci Pol 4:85–97
  • Konarska A (2008) Changes in the ultrastructure of Capsicum annuum L. seedlings roots under aluminum stress conditions. Acta Agrobot 61:27–32
  • Kumari M, Taylor GJ, Deyholos MK (2008) Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol Genet Genomics 279:339–357. doi:10.1007/s00438-007-0316-z
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685
  • Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaceae). Planta 212:323–331
  • Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis, and degradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–469. doi:10.1146/annurev.pp.41.060190.002323
  • Liu Q, Yang JL, He LS, Li YY, Zheng SJ (2008) Effect of aluminum on cell wall, plasma membrane, antioxidants and root elongation in triticale. Biol Plant 52:87–92. doi:10.1007/s10535-008-0014-7
  • Ma JF, Shen RF, Nagao S, Tanimoto E (2004) Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol 45:583–589
  • Matamoros MA, Dalton DA, Ramos J, Clemente MR, Rubio MC, Becana M (2003) Biochemistry and molecular biology of antioxidants in the rhizobia–legume symbiosis. Plant Physiol 133:499–509. doi:10.1104/pp.103.025619
  • Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46
  • Meriga B, Reddy BK, Rao KR, Reddy LA, Kavi Kishor PB (2004) Aluminum-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol 161:63–68
  • Milla MAR, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol 130:1706–1716
  • Mohammadi M, Karr AL (2001) Superoxide anion generation in effective and ineffective soybean root nodules. J Plant Physiol 158:1023–1029
  • Moran JF, James EK, Rubio MC, Sarath G, Klucas RV, Becana M (2003) Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules. Plant Physiol 133:773–782. doi:10.1104/pp.103.023010
  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247. doi:10.1093/jexbot/53.372.1237
  • Pan S-M, Yau Y-Y (1992) Characterization of superoxide dismutase in Arabidopsis. Plant Cell Physiol 37:58–66
  • Panda SK, Matsumoto H (2007) Molecular physiology of aluminum toxicity and tolerance in plants. Bot Rev 73(4):326–347
  • Panda SK, Singha LB, Khan MH (2003) Does aluminium phytotoxicity induce oxidative stress in greengram (Vigna radiata)? Bulg J Plant Physiol 29:77–86
  • Panda SK, Baluska F, Matsumoto H (2009) Aluminium stress signaling in plants. Plant Signal Behav 4(7):592–597
  • Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65:1879–1893. doi:10.1016/j.phytochem. 2004.06.023
  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265. doi:10.1007/s00299-005-0972-6
  • Peixoto PHP, Cambraia J, Sant’anna R, Mosquim PR, Moreira MA (1999) Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Rev Bras Fisiol Veg 11:137–143
  • Polidoros AN, Scandalios JG (1999) Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.). Physiol Plant 106:112–120
  • Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827
  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidase and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol 106:53–60. doi:10.1104/pp.106.1.53
  • Rengel Z, Zhang WH (2003) Role of dynamics of intracellular calcium in aluminum-toxicity syndrome. New Phytol 159:295–314
  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418
  • Rubio MC, James EK, Clemente MR, Bucciarelli B, Fedorova M, Vance CP, Becana M (2004) Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. Mol Plant-Microbe Interact 17:1294–1305. doi:10.1094/MPMI. 2004.17.12.1294
  • Ryan PR, Ditomaso JM, Kochian LV (1993) Aluminum toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446
  • Salzer P, Corbière H, Boller T (1998) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradice. Planta 208: 319–325. doi:10.1007/s004250050565
  • Santos R, Hérouart D, Puppo A, Touati D (2000) Critical protective role of bacterial superoxide dismutase in Rhizobium–legume symbiosis. Mol Microbiol 38:750–759
  • Santos R, Hérouart D, Sigaud S, Touati D, Puppo A (2001) Oxidative burst in alfalfa–Sinorhizobium meliloti symbiotic interaction. Mol Plant-Microbe Interact 14:86–89. doi:10.1094/MPMI.2001.14.1.86
  • Sasaki M, Yamamoto Y, Matsumoto H (1996) Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots. Physiol Plant 96:193–198
  • Scandalios JG, Guan L, Polidoros AN (1997) Catalases in plants: gene structure, properties, regulation, and expression. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor, New York, pp 343–406
  • Shamssudin ZH, Kasran R, Edwards DG, Blamey FPC (1992) Effect of calcium and aluminum on nodulation, nitrogen fixation and growth of groundnut in solution culture. Plant Soil 144:273–2799. doi:10.1007/BF00012885
  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038. doi:10.1007/s00299-007-0416-6
  • Shaw BP (1995) Effect of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biol Plant 37:587–596
  • Silva IR, Smyth TJ, Raper CD, Carter TE, Rufty TW (2001) Differential aluminum tolerance in soybean: an evaluation of the role of organic acids. Physiol Plant 112:200–210
  • Šimonovičová M, Tamás L, Huttová J, Mistrík I (2004) Effect of aluminum on oxidative stress related enzymes activities in barley roots. Biol Plant 48:261–266. doi:10.1023/B:BIOP. 0000033454.95515.8a
  • Sivaguru M, Horst WJ (1998) The distal part of the transition zone is the most aluminum-sensitive apical root zone of Zea mays L. Plant Physiol 116:155–163. doi:10.1104/pp.116.1.155
  • Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H (2000) Aluminum-induced 1,3-β-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol 124:991–1005. doi:10.1104/pp.124.3.991
  • Sivaguru M, Pike S, Gassmann W, Baskin TI (2003) Aluminum rapidly depolymerized cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol 44:667–675. doi:10.1093/pcp/pcg094
  • Sobkowiak R, Rymer K, Rucińska R, Deckert J (2004) Cadmiuminduced changes in antioxidant enzymes in suspension culture of soybean cells. Acta Biochim Polon 51:219–222
  • Streller S, Wingsle G (1994) Pinus sylvestris L. needles contain extracellular CuZn superoxide dismutase. Planta 192:195–201
  • Tamás L, Huttová J, Mistrík I, Šimonovičová M, Široká B (2006) Aluminium-induced drought and oxidative stress in barley roots. J Plant Physiol 163:781–784. doi:10.1016/j.jplph.2005.08.012
  • Tice KR, Parker DR, DeMason DA (1992) Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum intoxicated wheat. Plant Physiol 100:309–318
  • Vargas MC, Encarnacion S, Davalos A, Reyes-Perez A, Mora Y, Garcia-de los Santos A, Brom S, Mora J (2003) Only one catalase KatG, is detectable in Rhizobium etli, and is encoded along with the regulator OxyR on a plasmid replicon. Microbiology 149:1165–1176. doi:10.1099/mic.0.25909-0
  • Vasse J, De Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306
  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655. doi:10.1016/S0168-9452(03) 00022-0
  • Wayne LG, Diaz GA (1986) A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide electrophoresis gels. Anal Biochem 157:89–92
  • Wisniewski JP, Rathbun EA, Knox JP, Brewin NJ (2000) Involvement of diamine oxidase and peroxidase in insolubilization of the extracellular matrix: implications for pea nodule initiation by Rhizobium leguminosarum. Mol Plant-Microbe Interact 13:413–420
  • Yamamoto Y, Kobayashi Y, Rama Devi S, Rikiishi S, Matsumoto H (2003) Oxidative stress triggered by aluminum in plant roots. Plant Soil 255:239–243. doi:10.1023/A:1026127803156
  • Yamasaki H, Sakihama Y, Ikehara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H₂O₂. Plant Physiol 115:1405–1412
  • Zheng SJ, Yang JL (2005) Target sites of aluminum phytotoxicity. Biol Plant 49:321–331

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7f30667c-a3ec-439b-b2c9-ef68990ef52b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.