PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 70 | 4 |

Tytuł artykułu

Differentiation of the nuclear groups in the posterior horn of the human embryonic spinal cord

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The formation of nuclear groups in the posterior horns of the human embryonic spinal cord was traced in serial sections of embryos of developmental stages 13 to 23 (32 to 56 postovulatory days). The following observations, new for the human, are presented: 1. The differentiation of the neural tube into 3 zones (germinal, mantle and marginal) is detected in the middle of the 5th week. 2. The primordia of the posterior horns are marked at stage 14 (33 days). 3. In the middle of the 7th week the nucleus proprius and substantia gelatinosa are discerned. 4. Differentiation of the nuclei within the posterior horns proceeds in the ventrodorsal and rostrocaudal gradients. (Folia Morphol 2011; 70, 4: 245–251)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

70

Numer

4

Opis fizyczny

p.245-251,fig.,ref.

Twórcy

autor
  • Department of Anatomy, University of Medical Sciences, Swiecickiego 6, 60-781 Poznan, Poland
autor
  • Department of Anatomy, University of Medical Sciences, Poznan, Poland
autor
  • Department of Anatomy, University of Medical Sciences, Poznan, Poland

Bibliografia

  • 1. Briscoe J, Ericson J (2001) Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol, 11: 43–49.
  • 2. Ernfors P, Lee KF, Kucera J, Jaenisch R (1994) Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioception afferents. Cell, 77: 503–512.
  • 3. Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci, 21: 309–345.
  • 4. Hughes A (1976) The development of the dorsal funiculus in the human spinal cord. J Anat, 122: 169–175.
  • 5. Konstantinidou AD, Silos-Santiago I, Flaris N, Snider WD (1995) Development of the primary afferent projection in human spinal cord. J Comp Neurol, 354: 11–22.
  • 6. Lu B, Jan L, Jan Y-N (2000) Control of cell divisions in the nervous system: symmetry and asymmetry. Annu Rev Neurosci, 23: 531–556.
  • 7. Malinsky J, Malinska J (1970) Developmental stages of the prenatal spinal cord in man. Folia Morphol (Prague), 18: 228–235.
  • 8. Malinsky J (1972) Ultrastructural changes of cell elements during the differentiation of neuroblasts, and glioblasts in human spinal cord. Acta Univ Palack Olom Fac Med, 64: 183–194.
  • 9. Marti E, Gibson SJ, Polak JM, Facer P, Springall DR, van Aswegen G, Aitchison M, Koltzenburg M (1987) Ontogeny of peptide- and amine-containing neurons in motor, sensory, and autonomic regions of rat and human spinal cord, dorsal root ganglia, and rat skin. J Comp Neurol, 266: 332–359.
  • 10. Muller F, O’Rahilly R (2004) The primitive streak, the caudal eminence and related structures in stages human embryos. Cells Tissues Organs, 177: 2–20.
  • 11. Okado N (1980) Development of the human cervical spinal cord with reference to synapse formation in the motor nucleus. J Comp Neurol, 191: 495–513.
  • 12. Okado N, Kakimi S, Kojima T (1979) Synaptogenesis in the cervical cord of the human embryo: Sequence of synapse formation in a spinal reflex pathway. J Comp Neurol, 184: 491–518.
  • 13. O’Rahilly R, Muller F (2001) The nervous system. In: O’Rahilly R, Muller F eds. Human embryology and teratology. 3rd Ed. Wiley-Liss, New York, pp. 395–453.
  • 14. O’Rahilly R, Muller F (2006) The embryonic human brain. An atlas of developmental stages. 3rd Ed. Wiley-Liss, Hoboken, NJ.
  • 15. Ozaki S, Snider WD (1997) Initial trajectories of sensory axons toward laminar targets in the developing mouse spinal cord. J Comp Neurol, 380: 215–229.
  • 16. Ozaki S, Wright DE, Zhou L, Snider WD (1996) Influences of NT-3 on proprioceptive axon projections to spinal motoneuron pools. Soc Neurosci Abstr, 22: 1000.
  • 17. Saraga-Babic M, Krolo M, Sapunar D, Terzic J, Biocic M (1996) Differences in origin and fate between the cranial and caudal spinal cord during normal and disturbed human development. Acta Neuropathol, 91: 194–199.
  • 18. Stein RB (1999) Functional electrical stimulation after spinal cord injury. J Neurotrauma, 16: 713–717.
  • 19. Tanaka O, Yoshioka T, Shinohara H (1988) Secretory activity in the floor plate neuroepithelium of the developing human spinal cord: morphological evidence. Anat Rec, 222: 185–190.
  • 20. Vaughn JE, Grieshaber JA (1973) A morphological investigations of an early reflex pathway in developing rat spinal cord. J Comp Neurol, 148: 177–210.
  • 21. Vilović K, Ilijić E, Glamoclija V, Kolić K, Bocina I, Sapunar D, Saraga-Babić M (2006) Cell death in developing human spinal cord. Anat Embryol, 211: 1–9.
  • 22. Węclewicz-Kruczyńska K, Woźniak W (1980) Rozwój rdzenia kręgowego i zwojów rdzeniowych w okresie zarodkowym człowieka. Abstr 12th Cong Pol Anat Soc, Kraków: 151.
  • 23. Węclewicz-Kruczyńska K, Woźniak W (1981) The form and microscopic structure of the human spinal cord during the embryonic period. Folia Morphol, 40: 390–399.
  • 24. Wolpaw JR, Tennissen AM (2001) Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci, 24: 807–843.
  • 25. Woźniak W, Węclewicz K (1987) The formation of motor cell groups in the human embryonic spinal cord. Folia Morphol, 46: 91–97.
  • 26. Woźniak W, O’Rahilly R, Olszewska B (1980) The fine structure of the spinal cord in human embryos and early fetuses. J Hirnforsch, 21: 101–124.
  • 27. Yip YP, Capriotti C, Drill E, Tsai L-H, Yip JW. (2007) Cdk5 selectively affects the migration of different populations of neurons in the developing spinal cord. J Comp Neurol, 503: 297–307.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7f1aff07-eb43-4b04-bb97-6fef1d0e3b4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.